5]

ENE
u\/_i |
1\ /

SCIENTIFIC DRTA SYSTEMS

—
P)_‘L
(]—(r

A

{]—f])
D (
ElS|E|
« 1N

A SIEUA SIENE
\/

=
w
Tl
w
Y
w
O]
<
=
p=
<
o
&)
®)
oc
Q.
-
<
Q
<
=
T}
=
<
=
-
<
=
o
TI
&
z
-
Tl
~
~
n
c
=
(L]
mn
un|

(]ﬂ(r jr\[e J'"fr] r —
UL J_\/__ UL] JU L | ,
4 JI.\ |1 —] f]—f(] / ;
\/__ ' JuU\ U | J U Ju- | U

1 r ils
\/\/ | (= AL (S W\ A

1
5
Ju\ /U
1M —1
(]
s]"(,]—V"
SIS
L\ J/ U =
N3\

S
S|E

Price: $3.50

FUNCTIONAL MATHEMATICAL
PROGRAMMING SYSTEM

REFERENCE MANUAL

for

SDS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION
90 16 0%9A

April 1969

SDS

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/El Segundo, California 90245

© 1969, Scientific Data Systems, Inc. Printed in U.S.A.

RELATED PUBLICATIONS

Title Publication No.

SDS Sigma 5 Computer Reference Manual 90 09 59

SDS Sigma 7 Computer Reference Manual 90 09 50

SDS Sigma 5/7 Batch Processing Monitor (BPM) Reference Manuai 90 09 54

SDS Sigma 5/7 Batch Processing Monitor (BPM) Operations Manual 90 11 98
NOTICE

The specifications of the software system described in this publicationare subject to change without notice. The avai lability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SDS sales representative for details.

INTRODUCTION

Procedures

CONTENTS

Control Language

Communication Region

Files

Input Data

Output

Selection Lists

WNNNNDN—

FMPS FUNDAMENTALS

Constants

~

Integer

Valid Integer Constants

Invalid Integer Constants

Floating~Point

Valid Floating=Point Constants
Invalid Floating-Point Constants
Character

Valid Character Constants

Invalid Character Constants

Variables

Integer

Valid Integer Variable Names
Invalid Integer Variable Names
Floating-Point

Valid Floating-Point Variable Names
Invalid Floating-Point Variable Names
Alphanumeric

Valid Alphanumeric Variable Names
Invalid Alphanumeric Variable Names
Interrupt

Valid K-Type Variable Names
Invalid K-Type Variable Names
Files

Internal Files

Storage Requirements for Internal Files
Communication Files

NNV 000000 NNNNNNOUGOOLOAE DS DMDNASDMDNNSDNSNSN

Card Format Files

FORTRAN Format Files

Data Storage on Records

FMPS CONTROL LANGUAGE STATEMENTS

Introduction

14
14

Statement Types

14

Card Format

14

Control Language Statements

14

CALL

14

Valid Procedure CALL Statements

Invalid Procedure CALL Statements

Invalid Continuation Cards for Procedure
CALL Statement

14
14

15

Arithmetic

5

Valid Arithmetic Statements
Invalid Arithmetic Statements

15
15

ASSIGN

Valid ASSIGN Statements

Invalid ASSIGN Statements

GO T1O

Valid GO TO Statements

Invalid GO TO Statements

IF

Valid IF Statements

Invalid IF Statements

RETURN

EXIT

WRITE

TITLE

STOP

END

Sample FMPS Program

BASIC FMPS PROCEDURES

Operating Procedures Repertoire

ENTER

DEVICE

Data Control Blocks

Device Argument

ATTACH

LOADLIST

DATA CARD FORMATS AND DECK
ORGANIZATION

Standard Card and Deck Formats for INPUT
Name Card

Indicator Cards

Data Cards

ENDATA Card

Data Deck Organization

ROWS Data Cards

SPRICES Data Cards

COLUMNS Data Cards

RHS Cards

RANGES Data Cards

BOUNDS Data Cards

Nonstandard Card Formats for INPUT
LP/90/94 Share Format

LP/90/94 Chapters

RHS Names

Basis Data Chapter

Order of Input

Card Format

UNIVAC 1108 Share Format

UNIVAC 1108 Chapters

RHS Names

Order of Input

Card Format

CDM4 Share Format

CDM4 Chapters

RHS Names

Order of Input

Card Format

15
15
15
15
16
16
16
16
16
16
16
17
17
17
17
18

19

19
19
19
19
19
20
20

22

22
22
22
22
22
22
23
23
23
24
24
24
25
25
25
25
25
25
25
26
26
26
27
27
27
27
27
27
28

NAME and ENDATA Cards

Output

Slack Indicator on ROWS Cards
REVISE Data Cards

ROWS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

SPRICES Cards for REVISE

MODIFY

COLUMNS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

RHS Cards for REVISE

RANGES Cards for REVISE

MODIFY

DELETE

BOUNDS Cards for REVISE

MODIFY

DELETE

BEFORE

AFTER

BASISIN/BASISOUT Data Cards

LOADLIST Data Cards

Indicator Cards

Data Cards

NAMES Data Cards

MASKS Data Cards

6. LINEAR PROGRAMMING OPERATING MODE

Input Phase

INPUT

REVISE

Optimization Phase

OPTIMIZE

Degeneracy

Pivot Rejections

INVERT

CRASH

Output Phase

QUTPUT

SOLUTION

ERRORS

CONDITION

GET

Preservation/Restoration Phase

BASISOUT

SAVE

BASISIN

RESTORE

7. SEPARABLE PROGRAMMING OPERATING
MODE

General Description of SEP Mode
SEP Algorithm

Piece-Wise Linear Approximation
Applicability of the SEP Algorithm

28
28
28
28
29
29
29
29
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
30
30
31
31
31
31
31

32

32
32
33
33

35
35

36
37
37
40
42
42
42
42
42
43
43
43

44
45
45
46

Examples Using Separable Programming
Nonlinear Object Function

Nonlinear Constraint

Input Phase

INPUT

REVISE

SEP Optimization Phase

OPTIMIZE

INVERT

SETBOUND

Qutput Phase

OUTPUT

SOLUTION

ERRORS

CONDITION

SEP Preservation/Restoration Phase
BASISOUT

SAVE

BASISIN

RESTORE

OPERATING PROCEDURES

BPM Control Commands Used in FMPS Runs
ASSIGN and CALL Device Interaction
Efficient Use of FMPS

Organizing the Control Program
Multiple Attachments of Restart Tape

APPENDIXES

PARAMETRIC PROGRAMMING
RANGE

PARAOBJ

PARARHS

FMPS ERROR MESSAGES

Control Language Compiler Diagnostics
Input/Qutput Error Types

FMPS Sample Runs

TABLES

FMPS Procedures

Types of Variables

Integer (I-TYPE) CR Variables

Floating=-Point (F~Type) CR Variables
Alphanumeric (A-Type) CR Variables

Interrupt (K-Type) CR Varidbles

Internal and Communication Fiies

Procedures Using Communication Files

46
46

47
48
49
49
49
51
51
52
52
52
53
54
54
54

oA

24

55

56

BEEE

59
59

61
62

64
64

65

~0

10

10.

11.

15.

16.

17.

18.

20.

21.

22.

. Output Procedures

. SEP Output Procedures

FMPS Operating Procedures

Input Procedures

Optimization Procedures

Parameters for OUTPUT

. ROWS Chapter Column Description

COLUMNS Chapter Column Description
Preservation/Restoration Procedures

SEP Input Procedures

SEP Optimization Procedures

SEP Preservation/Restoration Phase
Consecutive-Sequential File Assignments

Direct-Access File Assignments

19

32

33

37

38

40

41

42

47

49

52

54

56

23.
24,
25.

26.

Parametric Programming Procedures

Output for Basic Variables

Qutput for Nonbasic Variables

Input/Qutput Error Types

ILLUSTRATIONS

59

60

60

64

FORTRAN Communication File Record Structure ___ 11

Format of a NAME Record

Record Formats Produced by SOLUTION
Record Formats Produced for INPUT
Sample FMPS Control Language Program
Data Deck Organization for INPUT

Piece-Wise Linear Approximation to a
Separable Function

General FMPS Deck Structure

11

12

13

18

23

44

57

1. INTRODUCTION

This manual describes the Functional Mathematical
Programming System (FMPS) for SDS Sigma 5/7 computers.
FMPS is a mathematical programming system composed of
functions for solving linear programming (LP) problems.
The manual is designed for the user who is familiar with
mathematical programming theory and application. Chap-
ter 1 provides general information about FMPS features.
These features include:

e Subroutines, called "procedures", for solving linear
programming problems.

e A user-oriented control language for sequencing oper-
ations, controlling exception conditions, and adjust-
ing folerances.

e The flexible design of communication files and format
options, and the ability, at the level of each major
function, to direct the output stream to magnetic tape
(in addition to the printer), permitting FMPS to be
used os a free-standing package, or as part of a user-
designed optimization package.

Chapters 2 and 4 discuss basic concepts and basic procedures,
respectively, of FMPS that are applicable to all operating
modes. FMPS control language statements are described in
detail in Chapter 3. Chapter 5 presents data formats and
data deck organization. Chapter 6 outlines procedures used
in the linear programming operating mode, and Chapter 7
describes procedures used in the separable programming
operating mode. When these procedures are identical in
both modes, they are repeated in Chapter 7 for user con-
venience. Appendix A describes parametric programming
and ranging procedures (an optional extension to the basic
system); Appendix B is a list of error messages; and Appen-
dix C presents an FMPS LP mode sample run.

PROCEDURES

FMPS procedures and their functions are given in Table 1
below. (Basic FMPS operating procedures are given in
Chapter 4.)

Table 1. FMPS Procedures

Procedure Purpose

INPUT Reads matrix data from cards or tape in
standard FMPS format or in various
SHARE formats such as LP 90/94,
UNIVAC 1108 LP, or CDC CDM4,
QUTPUT Displays the input or current matrix in
various formats.

REVISE Reads correction data for modifying the
matrix.

Table 1. FMPS Procedures (cont.)

Procedure

Purpose

CRASH

OPTIMIZE,
INVERT
SOLUTION

ERRORS

CONDITION

GET

BASISOUT

SAVE

BASISIN

RESTORE

PARARHS,
PARAOBJ

RANGE

LOADLIST

Creates an initial basis structure for
the current matrix and performs prelim-
inary validity checks on the matrix.

Performs the actual linear programming
solution.

Displays the solution values in various
formats.

Displays the computation errors in-
curred during the solution process for
the primal and dual problems.

Prints out the communications region
confents.

Retrieves information about a row or
column and alters the strategy in the
control language.

Punches or files (FILE parameter) the
current basis structure and bounds
status.

Saves the contents of the communica-
tions region, the various internal work
areas, and all internal files (MATRIX,
INVERSE, etc.) on the tape file
RESTART.

Inputs a new basis or modifies the ex-
isting basis.

Restores (from file RESTART) the data
areas and internal files saved by SAVE.

Performs post-optimal parametric anal-
ysis of the solution with respect to the
right-hand-side and objective function.
(Refer to Appendix A.)

Performs post-optimal range analysis.
(Refer to Appendix A.)

Loads a list of row labels and/or col-
umn labels to be used as selection lists
or masks during the OUTPUT, SOLU-
TION, and/or RANGE procedures when
selective output is desired.

Introduction

1

CONTROL LANGUAGE

The sequence of operations executed in an FMPS run is
controlled through statements, written in a user-oriented
control language, that

e Inifialize and, if desired, modify tolerances during
execution.

e Assign inpuf/oui'puf devices at the FMPS level.

e Preprogram action to be taken in case of exception
or error conditions.

In the following chapters of the manual, certain conven-
tions have been adopted for defining FMPS commands.
Capital letters indicate command words that are required

in the literal form shown. Lower case letters are figurative
representations of parameters. Command parameters en-
closed by braces ({}) indicate a required choice. Brack-
eted ([1) parameters are optional. The format of the FMPS

control language closely resembles the FORTRAN language.

A procedure is activated by using the CALL statement as
shown below,

CALL procedure [(argument)]

where CALL is followed by the name of the procedure
and, if required, a list of arguments enclosed by paren-
theses to be used by the procedure. For example, the
statement

CALL OUTPUT (BYROWS)

causes the input mairix to be listed by rows.

Initialization and modification of tolerances are performed
by means of assignment statements. Reserved names have
been assigned fo each tolerance available to the user. For
example, the statement

FDJZT =1.0D-6

assigns tothe DJ zerotolerance the value 0.000001. Other
examples of tolerances available to the user are FMPIVT
(minimum pivot clearance during optimization) and ILINES
(number of lines fo be printed per page).

Provision is made for user working-storage variables. The
language allows execution of simple arithmetic such as

(IF (FWD3.LT.1.0D-8) GO TO 325
/s

FWD3=FWD3/10.

where
FWD3 is a user working-storage variable.
325 is the label of a statement in the control pro-

gram as in a FORTRAN program.

Reserved variable names have been assigned for the han-
dling of exception interrupts. Forexample, the statement

ASSIGN 460 TO KUBS

can be used to cause statement 460 to be executed if un-
boundedness occurs during optimization or parametric pro-
cedures. Assignments are dynamic and can be modified
under program control during the course of execution.

COMMUNICATION REGION

An area of computer memory called the communications
region (CR) contains all variables with reserved names
(such as FDJZT, ILINES, KUBS, etc.). FMPS initializes
these variables to standard values; therefore, it is not
necessary to initialize them in the control program if the
standard values are appropriate.

FILES

Data is carried in disc or tape files. Their purpose is to
hold FMPS data in a format allowing maximum processing
speed. The standard FMPS files are MATRIX, INVERSE,
UTIL1, and UTIL2. These files carry the matrix, its in-
verse, and various intermediate information (UTIL1 and
UTIL2). In addition, the RESTART file may be used for
infermediafe dumping of the run status. The DEVICE and
ATTACH procedures must be used to define Data Control
Blocks (DCBs) through which files are to be used and to
assign these files to these devices. (See Chapter 4 for a
detailed description of these procedures.) The files are
internal to FMPS and are not intended to be used as input
or output files by user-designed programs.

INPUT DATA

Data can be input to FMPS from cards or tapes, in either
card image format, or FORTRAN unformatted WRITE format.
(FORTRAN unformatted WRITE format provides for better
data packing when using user-written matrix generators.)
Input data for FMPS is accepted by the following proce-
dures: INPUT, REVISE, LOADLIST, and BASISIN.

OUTPUT

Most FMPS procedures create printer output. The OUTPUT,
SOLUTION, and BASISOUT procedures write output on
magnetic tape in addition to the printer if the user so
chooses. The magnetic tape output for OUTPUT and

2 Control Language/Communication Region/Files/Input Data/Output

SOLUTION is in FORTRAN unformatted WRITE format,
which provides a compact data format for interface with
user-designed report writers. The BASISOUT procedure
produces either punched cards or card images on magnetic
tape. Both are suitable for subsequent reloading by the
BASISIN procedure. As with input files, a symbolic unit
for each output file must be declared by means of the
ATTACH procedure.

Users need not be concerned with the format of the FMPS
internal files since INPUT and QUTPUT transfer data to or
retrieve data from them in a user-oriented format. How-
ever, nofe that the user must assign DCBs for the internal
files at the beginning of the run.

To provide a convenient method for abstracting the output
results (whether they are written on tape or printed), the
OUTPUT, SOLUTION, and RANGE procedures include

many optional parameters. For example, OUTPUT provides

for listing the matrix by rows, by columns, in matrix tab~
leau format, or in coded format. (In coded format, coef-
ficients are symbolized by letters showing the sign and
magnitude of the coefficients.) Similarly, the RANGE
procedure can be made selective with respect to the type
of variable prinfed, that is, printing only the basic, only
the nonbasic, or both. Furthermore, RANGE can select
individual items of information for printing.

All three procedures can be made selective with respect to
the individual rows and/or columns to be printed, that is,
1. Print only specified rows.

2. Print all rows except specified rows.

3. Print all rows which match specified masks.

4,

Print all rows except those which match specified masks,

Similar options are available independently for columns,

SELECTION LISTS

Selection lists consist of names (rows and/or columns) and/
or masks (rows and/or column names with anasterisk match-
ing any character in the row or column name in the corre~
sponding position in FMPS internal files). Since the same
selection list usually applies over an entire run, a single
procedure, LOADLIST, is used to load the rows-and-
columns selection lists,

Items selected are controlled by optional arguments. For
example

1 RCHAPTER,2,5,CCHAPTER,2,4,8,FILE, -
'SOLFILE")

CALL SOLUTION (ROWS,LISTR,COLS,
EXCEPT,LISTC,

causes the solution to be written on the user file SOLFILE
as well as on the printer, outputting only the rows included
in row selection list LISTR, the columns not included in
column selection list LISTC, the row name and its slack
activity for rows, and the column name and its activity for
columns. One selection list may be used to control output
items during several procedures such as OUTPUT, SOLU-
TION, and RANGE. Such procedures have an optional
parameter indicating whether the information to be output
is to be controlled by the selection list. The list need be
loaded only once. In some procedures such as RANGE,
reduction of oufput and calculations will result in sizable
savings in execution fime.

Selection Lists 3

2. FMPS FUNDAMENTALS

This chapter describes in detail some basic elementsof FMPS
such as variables and constants available in the control lan-
guage, intemnal files, selection lists, and the structure of
communication files.

CONSTANTS

The FMPS control language uses three types of constants in
Arithmetic statements and as parameters in procedural CALL
statements. They are: integer, floating-point, and
character.

INTEGER

A number written without a decimal point is called an inte-
ger constant. An integer constant is composed of one to
seven decimal digits. It may be preceded by a plus sign,

a minus sign, or a blank, If unsigned, it is assumed to be
positive. It may not contain any embedded blanks. Sample
valid and invalid integer constants are shown in the tables
below,

VALID INTEGER CONSTANTS

0
100000
-54

+1

INVALID INTEGER CONSTANTS

-i7 35 Contains an embedded blank
100, 000 Contains a comma

FLOATING-POINT

A number with a decimal point, optionally followed by a
decimal exponent (written as the letter D followed by a
signed or unsigned one- or two-digit integer constant) is
called a floating-point constant. The magnitude of a real
constant must be compatible with that allowed by FORTRAN
for the machine being used. However, only eight signifi-
cant digits are allowed. A floating=point constant may be
preceded by a plus sign, a minus sign, or ablank, Embedded
blanks are not allowed. The first table shown below gives
correct floating=point constants and their real magnitudes.
The second table shows invalid representations of floating-
point constants.

VALID FLOATING-POINT CONSTANTS

-3.49 -3.49
1,47D3 1470,
-.23D-4 -, 000023
0.0 zero
.2D+2 20.

4 FMPS Fundamentals

INVALID FLOATING-POINT CONSTANTS

. 123456789D1 Will be truncated to eight

significant digits

1,217.2 Contains a comma
1.7D 2 Contains a blank between
D and 2
1.3E4 E not valid - must use D
CHARACTER

A siring of from one to eight characters, enclosed by single
quotation marks, is called a character constant, (Thesingle
quotation mark is represented by a 5-8 punch on the card.)
Character constants, sometimes called literals, may be com-
posed of alphabetic, numeric, special, or blank characters.
The quotation marks are not part of the character constant,
but are used to delimit it. The quotation mark itself is the
only special character not allowed within the body of the
character constant, Correct character constants are shown
directly below, incorrect examples in the second table.

VALID CHARACTER CONSTANTS

'ROWS'
‘THE END
243"
'DOG/CAT'

INVALID CHARACTER CONSTANTS

'"CPERATION!' Cnly eight characters are
allowed
'ABD Second quotation mark missing
'A'BC' Embedded quotation mark not
allowed
VARIABLES

Variables (storage references) are symbolic names of either
locations within the control program (user working-storage
variables), or locations in the FMPS communication region
(CR variables).

All storage within FMPS is identified by type. The four
types of variables, each identified by its leading char-
acter, are shown in Table 2 below,

Table 2. Types of Variables

Code | Type
I Integer
F Floating=Point
A Alphanumeric
K Interrupt

User-created variables are distinguished from CR variables
by their second character, which must be a W, Also, user-
created variable names may contain a maximum of four char-
acters, while CR variable names may contain a maximum of
eight characters, User-created variable names containing
more than four characters will be truncated fo four. The
user may create a total of 50 integer and K-type variables
and a total of 50 floating=point and alphanumeric variables,
Each distinct type is discussed below,

INTEGER

Each integer (I-type) variable is a single precision word
containing a single precision integer value. Integer vari-
ables may assume any of the values of an integer consfant,
An I-type variable may be used in an Arithmetic statement,
an IF statement, a WRITE statement, or as a parameter in a
procedure CALL statement, Table 3 contains a list of all
CR integer variables and an explanation of each.

Some sample integer variables are shown in the following
tables,

VALID INTEGER VARIABLE NAMES

IFREQI CR variable for inversion iteration frequency
IWBG User working-storage variable
w3 User working-storage variable

INVALID INTEGER VARIABLE NAMES

U5 Not a valid CR variable name nor a valid
user working-storage name since second
character is not W

KROW Integer names must begin with 1

FLOATING-POINT

Each floating-point (F=type) variable is a double precision
word and contains a double precision floating-point value,
A floating-point variable may assume any of the values of
a floating-point constant. It may be used in an Arithmetic
statement, an IF statement, a WRITE statement, or as a
parameter in a procedure CALL statement, Table 4 con-
tains a list of all floating-point CR variables and an expla-
nation of each,

Table 3. Integer (I-type) CR Variables

CR Initialized

Variables Value Explanation

IDNFSOL 0 Number of feasible solutions found for the integer problem,

IDULSTOP 0 Controls the brake on DUAL in MIP operating mode, If IDULSTOP is nonzero,
DUAL will run to a feasible solution to the (possibly reduced) problem every
IDULSTOP major iterations,

IESWT 0 The console jump switch to interrogate. 1ESWT must be 0-8, If zero, no
switch is tested. If IESWT is 1-8, and the jump switch is on, KESWT inter~
rupt will occur,

IFREQA 0 Iteration frequency interrupt for OPTIMIZE, PARAOBJ, and PARARHS, If
IFREQA is 0, no interrupt will occur, Otherwise, the KFREGA interrupt will
occur every IFREQA iterations,

IFREQI 0 Iteration frequency interrupt for inversion. In the iterating procedures OPTIMIZE,
PARAOBJ, and PARARHS, the KINV interrupt will occur every IFREQI iterations
(IFREGI > 0).

IIWGHT 0 Infeasibility weighting switch, When IIWGHT is 1, the reciprocal of the amount
of infeasibility is used as a weighting factor, When IIWGHT is -1, the amount
of each infeasibility is used as a weighting factor. When IIWGHT is 0, all in-
feasibilities are given equal weight,

ILOGC 0 Iteration logging frequency on console typewriter,

ILOGP 0 Iteration logging frequency on standard printing device,

ILOGSS 0 On/Off switch for printing column selection messages during pricing of matrix.

ILINES 50 Maximum number of lines to be printed on a page.

INCAND 0 Number of profitable candidates from which one is selected during pricing of the
matrix, For example, if INCAND is 5, then from each group of 5 profitable col-
umns, the most profitable is selected. If INCAND s 0, the system will attempt to
choose the optimum set.

ININF 0 Current number of infeasible variables in the basis,

Variables 5

Table 3. Integer (I-type) CR Variables (cont.)

CR Initialized

Variables Value Explanation

INVTIME 0 Switch controlling the KINV interrupt timing routine in the PRIMAL procedure.

If INVTIME is 0, the timing routine is active and causes KINV interrupts at times
such that the total optimization time tends to be minimum, If INVTIME is -1,
the timing routine is not active.

IPARAM 0 Parametric programming mode indicator, If IPARAM is =1, PARAOBJ is in effect,
if IPARAM is 1, PARARHS is in effect, and if IPARAM is 2, PARARIM is in effect,

IPASS 2000 Number of assignments allowed during solution of the integer subproblem in MIP
mode before the KASS interrupt occurs.

IPFES 2000 Number of feasible solutions allowed to the integer subproblem in the MIP mode
before the KPFES interrupt occurs,

IPSOLTN 0 After solution of an integer subproblem in MIP operating mode, IPSOLTN will be
nonzero if there was o change in the integer solution and will be zero if the inte-
ger solution has remained the same,

ITCNT 0 Current iteration count,

ITIME 0 The length of time, in minutes, before the KTIME interrupt will occur. The KTIME
interrupt does not occur if KTIME is set fo zero, Whenever the KTIME interrupt
occurs, KTIME is set to zero, Time for KTIME is measured from the time of the
last initialization of ITIME,

Table 4. Floating-Point (F-type) CR Variables

CR Initialized

Variables Value Explanation

FABSZT 1.0D-12 Absolute zero tolerance. Any computed number is replaced by zero if its absolute
value is less than FABSZT,

FCMPDJ 0. 5D0 Factor used in determining effective DJ when infeasible, that is,

DJE=FCMPDJ*DJ+(1.0-FCMPDJ)*DJ1
where DJE is Effective DJ, DJ is True DJ of column, and DJI is DJ based on in-
feasibility removal qualities of column,

FDJZT 1,0D-07 DJ zero tolerance. If the absolute value of the reduced cost (DJ) is less than
FDJZT, it is considered zero,

FEPSILON 0.0 The value used to replace zero right-hand-side elements of inequalities on degen-
erate problems, If the constraint is of the less-than type, a zero RHS element is
replaced with FEPSILON, If the constraint is of the greater-than type, a zero
RHS element is replaced with -FEPSILON,

FINFZT 1.0D-07 Infeasibility zero tolerance, If the absolute value of the amount of infeasibility
is less FINFZT, the variable is considered feasible,

FMINVT 1.0D-09 Minimum inversion pivot tolerance, During INVERT, in the nontriangularized
portion, an element is not considered as potentially pivotal unless its absolute
value is greater than FMINVT,

FMPIVT 1.0D-08 Minimum pivot tolerance. During any optimization procedure (here, INVERT is
not considered an optimization procedure), an element is not considered as poten-
tially pivotal unless its absolute value is greater than FMPIVT.

FOBJVAL 0.0 Current objective function value,

FOBJWT -1.0 Objective function weight: =1, 0 for maximization, 1.0 for minimization.

6 Variables

Table 4. Floating=Point (F-type) CR Variables (cont.)

CR Initialized

Variables Value Explanation

FRDIFT 4096.0 Relative difference tolerance, This tolerance represents a power of 2, that Is,
2.0%*12 is 4096, If the difference of two numbers is in the low-order twelve
bits, the numbers are considered identical. Any user-specified value must be
a power of 2, such as 8192,0 or 16384, 0,

FRELZT 0.0 Relative zero tolerance. If the absolute value of the summation of a series of
numbers divided by the absolute value of the largest sum or number is less than
FRELZT, the summation is considered to be zero,

FSINF 0.0 Current sum of infeasibility. Each infeasibility is summed in absolute terms,

FTHETAC 0.0 Initial value of THETA for PARAOBJ.

FTHETACM 0.0 Maximum value of THETA for PARAOBJ.

FTHETACP 0.0 The incremental value for THETA during PARAOBJ for which the KSOLTN infer-
rupt will occur,

FTHETAR 0.0 Initial value of THETA for PARARHS,

FTHETARM 0.0 Maximum value of THETA for PARARHS,

FTHETARP 0.0 The incremental value for THETA during PARARHS for which the KSOLTN inter-
rupt will occur.

Correct and incorrect floating-point variable names are
shown in the tables below,

VALID FLOATING-POINT VARIABLE NAMES

FMPIVT CR variable for minimum pivot tolerance
for optimization

FWO1 User working-storage variable

FW5D User working-storage variable

INVALID FLOATING-POINT VARIABLE NAMES

FDOG Not a valid CR variable name nor a valid
user working-storage name since second
character is not W

AW07 Floating-point names must begin with F

ALPHANUMERIC

Each alphanumeric (A-type) variable is a double precision
word and contains up to eight characters. An alphanumeric
variable may assume any of the values of a character con-
stant. It may be used in a simple Arithmetic statement, in
an IF statement, in a WRITE statement, or as a parameter
in a procedure CALL statement. Table 5 contains a list of
all alphanumeric CR variables and an explanation of each,
followed by tables showing valid and invalid alphanumeric
variables,

VALID ALPHANUMERIC VARIABLE NAMES

ARHS CR variable for name of current right-
hand-side

AWLD User working-storage variable
AWO07 User working-storage variable

INVALID ALPHANUMERIC VARIABLE NAMES

AMESS Neither a valid CR variable name nor a
valid user working-storage name since
second character is not a W

NAME Alphanumeric names must begin with A
INTERRUPT

During the execution of a mathematical programming sys-
tem, many conditions arise which require some form of cor-
rective action, Although much thought is generally given
to the corrective action to be taken, no particular action

is suitable under all circumstances. The interrupt processing
concept in FMPS has been developed to facilitate initiation
of appropriate corrective action when it is required,

For each condition requiring corrective action or for any
point where greater user flexibility is desired, a CR inter-
rupt variable is reserved. The function of each variable

is to serve as a pointer to a control language statement or
group of statements that will perform the corrective active
or procedural steps desired by the user and allow for the
resumption or exiting of the procedure causing the interrupt.

FMPS will initialize all interrupt variables to perform stan-
dard recovery techniques. The user, through the use of the
ASSIGN command, may reset any interrupt variable to per-
form his own sequence of commands,

An interrupt (K-type) variable may assume the value of any
valid statement number. The user working-storage K-type

Variables 7

variable may be used in a GO TO statement, an ASSIGN
statement, or a WRITE statement. Conversely, a K-type
CR variable may only be referenced in a WRITE statement
or an ASSIGN statement. The K-type CR variable is a
single precision word containing a pointer to a control
language sequence of instructions to be executed if an
interrupt in a procedure occurs. Table 6 contains a list of
all interrupt variables and an explanation of each. Sample
K-type variables are shown in the tables below.

VALID K-TYPE VARIABLE NAMES

FILES

FMPS includes two types of files:

® INTERNAL FILES For intermediate storage during
FMPS procedures (magnetic

tape or disc)

KMAJER CR major error interrupt variable used by ® COMMUNICATION For communication between
many procedures FILES FMPS and user—designed
KWST User working-storage variable programs (magnetic tape)
INVALID K-TYPE VARIABLE NAMES
KQUIT Not a valid CR variable name nor a user Table 7 lists required and optional files for operating in
valid working-storage name since second the linear programming (LP) or separable programming
character is not a W (SEP) operating mode. This fable also indicates the inpui/
output device type (sequential such as tape, or random-
IWAL K-type names must begin with K access such as disc) that is required, preferred, or optional.
Table 5. Alphanumeric (A~Type) CR Variables
CR Initialized
Variables Value Explanation
ADATA None Contains the name of the data deck for data reading procedures such as INPUT,
REVISE, etc. Also used by data~outputting procedures (such as BASISOUT) to
name output data deck. It specifies the name that appears on the NAME card
of image input. (Refer to Chapter 5 for general data formats).
AOBJ None Contains name of objective function row,
APBNAME None Contains name of problem,
APOBJ None Contains name of PARAOBJ change row.
APRHS None Contains name of PARARHS change column,
ARHS None Contains name of right-hand-side.
Table 6. Interrupt (K-Type) CR Variables
CR Initialized
Variables Value Explanation
KFREQA None Iteration frequency A interrupt. This interrupt will occur when IFREQA iterations
occur,
KINV None Inversion interrupt, This interrupt will occur when IFREGI iterations occur or
an inversion is required,
KIOER Terminate Run Input/output device error interrupt,
KMAJER Terminate Run Major error interrupt,
KMINER None Minor error interrupt,
KNFS None No feasible solution interrupt,
KSOLTN None SOLUTION print interrupt.
KTIME None Elapsed time interrupt. This interrupt will occur when ITIME minutes have elapsed.
KUBS None Unbounded solution interrupt.

8 Files

Table 7. Internal and Communication Files

Required Internal Files

File Name Device Type

Description of File

MATRIX Sequential or
Random=-Access

INVERSE Preferably
Random-Access

UTIL1 Sequential or

Random=Access

UTIL2 Sequential or
Random=Access

Contains the internal representation - of the matrix processed

by INPUT,

Contains the internal representation of the product form of
the inverse.

A utility file used by many procedures for scratch storage.

A utility file used by many procedures for scratch use.

Optional Internal Files

RESTART Sequential

Used by the SAVE procedure for storing all files for later
resumption of run, Used by the RESTORE procedure for
restoring the machine to the state at the time the SAVE pro-
cedure prepared the file.

Optional Communication Files

'filename’ Sequential

Any user-defined file used for internal communication between
FMPS and user's programs, Several such files can be used. The
quote marks are part of the name of the file.

INTERNAL FILES

Within each operating mode of FMPS, a minimum number
of internal files is required. Each internal file has been
assigned a unique preempted name, and these names will
be referred to throughout this manual. The user is required
to attach the required files to appropriate DCBs (see
Chapter 4),

STORAGE REQUIREMENTS FOR INTERNAL FILES

The number of words of disc storage required by the MATRIX
file is specified by the following equation.

2.25 (5M + NSP +4N + NNZ + 4NRHS + NNZRHS)

where
M is the number of rows in the matrix.
NSP is the number of slack prices.
N is the number of columns in the matrix.
NNZ is the number of nonzero elements in

columns,
NRHS is the number of right-hand-sides.

NNZRHS is the number of nonzero elements in
right=hand-side(s).

The number of words of disc storage required by the
INVERSE file is specified by the following equation

4.5 (M * 1 .25 ANNZ)

where
M is the number of rows in the matrix.
ANNZ is the average number of nonzero elements

in a matrix column.

The number of words of disc storage required by files UTIL1
and UTIL2 is the same as for the MATRIX file.

These estimates for disc storage may vary during certain
procedures. For example, during REVISE, the storage
requirement for the INVERSE file is generally twice that
of the MATRIX file.

For large problems, it may not be possible to assign all
files to disc storage during preliminary phases such as
INPUT and REVISE. Since it is desirable to have the
files on disc during the iterating procedures (OPTIMIZE,
INVERT, etc.), it is suggested that the user assign all files
to magnetic tape during the INPUT/REVISE phase. Fol-
lowing this, he may call the CONDITION and SAVE

procedures,
The CONDITION output will list the current storage re-

quirements (in words) for each file and the maximum storage
required to date. The current size of the MATRIX file can

Files 9

be used for its disc storage requirements as well as for UTIL}
and UTIL2. The current storage requirements stated for the
INVERSE file cannot be used for disc estimating since the
iterating procedures have not yet been used,

For maximum efficiency, the following priority should be
given in assigning files to disc for the iterating procedures.

Priority Procedure
I— INVERSE
2 MATRIX
3 UTILI
4 UTIL2

COMMUNICATION FILES

Communication files are the means of communication be-
tween FMPS and user-written programs. FMPS input pro-
cedures accept data from a standard card reading device
or, optionally, from communication files. FMPS output
procedures refrieve data from internal files and prepare
printed reports, Optionally, the data may be written on
a communication file.

To provide a mutually-convenient form of communication,
such files are structured to be read or written with FOR-
TRAN READ or WRITE statements. By using FORTRAN input/
output as the basic means of communication, the user can
write his own specific matrix generators and report writers

in FORTRAN,
The following table identifies the FMPS procedures that in-
clude the option of accepting input from communication

files or of writing oufput on communication files.

Tabie 8. Procedures Using Communication Files

Procedure FORTRAN
(in LP mode) Card Format Format
LOADLIST Yes No
INPUT Yes Yes
OUTPUT No Yes
REVISE Yes No
SOLUTION No Yes
BASISOUT Yes No
BASISIN Yes No

The following paragraphs describe basic communication file
structure and the means by which FORTRAN READ and
WRITE statements may be used to access the data.

CARD FORMAT FILES

All data decks that may be read or written on a CARD
file are orgonized as described in Chapter 5. Each data

......

data, and each dota deck is terminated with an ENDATA
card.

10 Files

Whenever a procedure requires input data, the input device,
whether card reader or CARD file, is searched for a NAME
card with an identification field (columns 15 to 22) that
matches the current contents of communication region vari-

able ADATA,

Whenever a procedure produces a data deck (that is, BASIS-
OUT), NAME and ENDATA cards are also produced. If the
output device is other than the card punch, that is, a CARD
file, the card file is positioned fo the logical end-of-file
and the new data deck is written. The logical end-of-file
is assumed to be a NAME card with zzzzzzzz in the identi-
fication field.

Procedures such as INPUT, REVISE, and LOADLIST require
data input. Whether the input is from cards, card images
on magnetic tape, or in FORTRAN unformatted WRITE for~
mat, the following conventions apply:

1. The data must be preceded by a name record identi-
fying the data record, and the data must be followed
by an ENDATA record,

2. In the control program, the CR variable ADATA must
be initialized with the name of the data set to be
loaded before the procedure requiring input is called.
For example, the following sequence,

ADATA = '"MATRIX1'
CALL INPUT

causes the card data set with the name MATRIX]1 to be
loaded by the INPUT procedure.

3. The card data sets must be placed after the END state-
ment of the control program. The card data sets must
follow each other in the sequence of input,

4. Input records on magnetic tape can occur in any se-
quence, FMPS will rewind the input tape, if neces-
sary, to locate the desired set of data if the tape was
positioned beyond the record to be loaded,

5. For proper operation, it is necessary that all input files
include as the last record a NAME record with the
name zzzzzzzz and an ENDATA record. This con-
stitutes the logical end-of-file for FMPS,

6. When writing output on magnetic tape, FMPS auto-
matically supplies the NAME and ENDATA rec-
ords. The name is copied from the current CR
variable ADATA which must be initialized to the
desired name by the user before executing the out-
put. If the tape includes data prior to the out-
put operation, the new output data is appended to
the current data and a logical end-of-file (NAME
zzzzzzzz and ENDATA) is added. Decks punched
by FMPS also include the NAME and ENDATA

records.

7. The INPUT procedure includes the option of reading
card decks or magnetic tape reels prepared for other
linear programming packages such as LP 90/94, 1108
LP, and CDM4, When reading such data from cards,
NAME and ENDATA must precede and follow the input
data. When reading from magnetic tape, the NAME
and ENDATA records must not be present on the tape.

FORTRAN FORMAT FILES

A FORTRAN format file consists of a series of unformatted,
FORTRAN-=-written records on tape. Each record contains
60 double precision (DP) words. The structure of each rec-
ord is shown in Figure 1. The first three DP words are used
to identify the record.

The first DP word contains the name of the procedure gen-
erating the record or the name of the procedure for which
this record is input. N14, the left half of the first DP
word, contains the first four characters of the name, and
N58, the right half of the first DP word, contains the last
four characters of the name,

The second DP word contains the subname of the record.,
SN14, the left half of the second DP word, contains the
first four characters of the subname. SN58, the right
half of the second DP word, contains the last four char=
acters of the subname,

The third DP word contains the record number and index of
the word last used in the record, RN, the left halfof the
third DP word, contains the record number, RN is used to
signal the end of a series of records,

As an example, if three 60=word records were required to
contain the information, RN in the first record would be
-1, in the second -2, and in the third 3, Therefore, if
RN is negative, it indicates that there is more of the same
kind of information in the next record, When RN is posi-
tive, it indicates that this is the end of records containing
the stated information, ILAST, the right half of the third
DP word, contdins the index of the last item in the record,
ILAST is always less than or equal to 60. The fourth through
the sixtieth DP words contain the information in groups of
three DP words,

DATA STORAGE ON RECORDS
Conventions for storage of data on records are outlined below,

1. All names (character strings of eight characters or less)
are stored with the first four characters of the name in
" the left half of a DP word and the last four characters
in the right half of the DP word.

2. Floating=point values are stored as double precision
floating=-point.

3. Integers are stored in the left half (most significant) of
a DP word.

As with CARD communication files, all input data must be
preceded by a NAME record, In addition, output will be

preceded by a NAME record that contains the contents of
CR cell ADATA, The format ofa NAME record is shown in
Figure 2,

The last record on a communication file will be a NAME
record whose name is zzzzzzzz (supplied by the user),

Each time information is written on a FORTRAN communi-
cation file, the tape is positioned to the zzzzzzzz name
record and the zzzzzzzz record is overwritien with a new
NAME record containing the contents of CR cell ADATA,
The information is then written followed by a new NAME
22zz2z7Z7 record,

Record formats produced by SOLUTION are shown in
Figure 3. Record formats for the INPUT procedure are
shown in Figure 4.

-~— DOUBLE PRECISION —
(M N14 N58

(2) SN14 SN58

(3) RN ILAST

(58)

(59)

(60)

Figure 1. FORTRAN CommunicationFile Record Structure

~—DOUBLE PRECISION —
(1) NAME 1<)
(2) AAAA AAAA
(3) 1 3
(4) Remainder
of
(60) record unused

Figure 2, Format of a NAME Record

Files 11

¢l

sa|1d

Identify
1 SOLY TION
2 IDEN TIFY
3 1 24
4 IDEN Toth
5 APBN AME
6 AAAA AAAA
7 IDEN Tbtb
8 STAT Uskh
9 AAAA AAAA
10 IDENT ToED
11 FOBJ WTES
12 +1.0
13 IDEN TBbD
14 FUNC TION
15 Co
16 IDEN TEbb
17 ARMS bbb
18 AAAA AAAA
19 IDEN Thbb
20 AOBJ BHh
21 AAAA AAAA
22 IDEN TEED
23 ITER sh66
24 1
25
60 |

}
}

Contents of CR Cell
APBNAME

OPTIMALS, UNBOUNDS
INFEASEb, UNBOUNDb

Objective Function Value

Name of Right-Hand Side

Name of Objective Row

Iteration Count

Remainder of
record not used

Rows
1 SOLU TION
2 ROWS £h66
3 RN ILAST
4 ROWN AME1
5 NUMB ERED
6 1
7 ROWN AMEI
8 ATEE bbb
9 AAKE bbb
10 ROWN AME]
11 ACTI VITY
12
13 ROWN AMEI
14 SLAC Kbbb
15
16 ROWN AME1
17 LLIM 868
18
19 ROWN AME1
20 ULIM 165
21
22 ROWN AME1
23 DUAL ACTb
24
25 ROWN AME1
26 COST B666
27
28 ROWN AME1
29 DJBB 555
30
31 ROWN AME2
32 NUMB ERBE
33 1
60 |

|
|

}

Row Number

FR, EQ, LL, UL,

Row Activity Value

Slack Activity Time

None or Lower
Limit Value

None or Upper
Limit Vulugp

Dual Activity Value

Slack Price Value

Reduced Cost Value
of Slack

Row Number

Columns

N O ;AW —

SOLU TION
COoLy MNSH
RN ILAST
COLN AME1
NUMB ERES
J
COLN AME]
ATED hEb
AABD bbb
COLN AME]
ACTI vity
COLN AME1
COsT bbb
COLN AME1
LLIM IT86
COLN AME1
ULIM T8
COLN AME1
DJE6 343
COLN AME2
NUMB ERBE
J

Column Number

BS, LL, UL, FR, FX,

} Column Activity
Value

Column Cost Value

} None or Lower
Limit Value

None or Upper
} Limit Value'

} Reduced Cost
Value of Column

Column Number

Figure 3. Record Formats Produced by SOLUTION

so14

€l

g
Q
E3
&

1 INPU Thbb
2 ROWS bEbb
3 RN ILAST
4 AbED bbb
5 ROWN AMEIT
6 Ignored
7 AbBD bbb
8 ROWN AME2
9 Ignored
58 AbBH bbtH
59 ROWN AMEM
60 Ignored
RHS
1 INPU T8
2 RHSH BHED
3 RN ILAST
-4 RHSN AMEN
5 ROWN AME]
6 5
7 RHSN AME]
8 ROWN AME1
9 i
58 RMSN AME5
59 ROWN AMEM
60 i

N, L, G, E,Row Type
Name of Row

RHS Name
Row Name
RHS Value

Sprices
1

OO N AW N

58
59
60

Ranges

NV N G A WN

58

59
60

INPU ThES
SPRI CESt
RN ILAST
SLKN AME]
cosT ROW
G
ALKN AME2
LOST ROWE
SLKN AMEM
CosT ROWS
&
INPY ThEE
RANG ESKS
RN ILAST
RNGN AMET
ROWN ~ |AMET
R;
RNGN AME]
ROWN AME2
R.
1
RNGN AMET
ROWN AMEM
i

Name of Slack
Name of Cost Row

Slack Price

Range Column Name
Row Name

Range Value

Columns
1 INPU THEh
2 coLy MNSH
3 RN ILAST
4 COLN AME] Column Name
5 ROWN AME1 Row Name
6 Aij Element Value
7 COLN AME1
8 ROWN AME2
9 ij
58 COLN AMEM
59 ROWN AMEM
60 Ajj
Bounds
1 |iney THES
2 BOUN DSHb
3 RN ILAST
LO, UP, EX, FR, PL
4 ANBE 55 } Typ'e of Bound
5 COLN AME] Column Name
6 B Bound Value
7 AABE (3523
8 COLN AME2
9 B
58 AABE 568
59 COLN AMEN
60 B
Endata
1 INPU TEED
2 ENDA TAB%
3 1

Figure 4. Record Formats for INPUT

3. FMPS CONTROL LANGUAGE STATEMENTS

INTRODUCTION

An FMPS run always includes a set of cards that specify the
operations to be executed, These cards are grouped together
in a contro} program. Rather than using fixed-format con-
trol cards, FMPS uses control statements that are compiled
by FMPS at the beginning of the run,

STATEMENT TYPES

The control language for FMPS was designed to be a subset
of the FORTRAN language. Thete are five basic types of
statements:

1. The procedural CALL statement, which loads and trans-
fers control fo one of the FMPS procedures. This type
of statement is analogous to a FORTRAN subroutine
call.

2. Arithmetic statements, which evaluate simple arithme-
tic expressions.

3. Program flow control statements, such as ASSIGN,
GO TO, EXIT, RETURN, and IF, which transfer con-
trol to a statement other than the next one in sequence.

4. The WRITE statement, which displays any user or
common-storage variable on the standard output de-
vice. The TITLE statement provides a heading for
each page of output.

5. Delimiting statements, which indicate the end of the
control program. The END statement is a message to
the compiler that there are no more statements to be
processed. It is not executable. The STOP statement
is executable and indicates that execution of the con-
trol program is to terminate,

CARD FORMAT

The card format for the FMPS control language is identical
to that of FORTRAN.

Column 1 is used to indicate a comment card, A C punched
in column 1 indicates that the rest of the card is a comment,
and is not processed, The comment card will appear on the
listing produced by the compiler. Comment cards may be
used freely to give information or improve readability.

Any statement, other than an END statement, may be given
a statement (step) number, A step number is any unsigned
integer between 1 and 9999, It may be placed anywhere
in columns 2=5 of the card,

Column 6 is reserved to indicate a continuation card. As
many continuation cards as are needed may be used, but

14 FFAPS Control Language Statements

they can only be used to continue the parameter list of a
procedure CALL statement, They may not be used with
any other kind of statement. Any nonblank character
punched in column 6 will indicate that the card is a con-
tinuation of the parameter list from the previous card, A
statement may begin in column 7 or anywhere thereafter,

Columns 73-80 are ignored, and may be used for sequence
numbers if the user wishes. A summary of card format is
shown below,

[C] [si’ep} {;T::Iionk} statement [sequence numbers]

CONTROL LANGUAGE STATEMENTS

CALL The procedure CALL statement causes the speci-
fied procedure to be loaded into memory, control to be
transferred to the procedure, and the set of parameters
specified in the argument list to be communicated to it.
The procedure CALL statement has the form

CALL pname [(parameter 1, parameter 2, . .]

where

pname is the name of the FMPS procedure to be
executed,

parameter 1, .. . represents the values to be
transmifted to the procedure, Parameters may
be constants, variables (either CR variables or
user working-storage variables), or keywords,
Some procedures have no parameters associated
with them, The parameters are always enclosed
by parentheses and separated by commas,

Correct and incorrect procedure CALL statements are
shown below,

VALID PROCEDURE CALL STATEMENTS

CALL OPTIMIZE
CALL ENTER (LP)
CALL ATTACH ('FILEY', 'F:F1")

Note that the CALL ATTACH procedure above could be

written as

AWD4 = 'FILEV
AWO1 = 'F:F1?
CALL ATTACH (AWD4, AWO1)

INVALID PROCEDURE CALL STATEMENTS

ENTER(LP) CALL must be specified
CALL ENTER 'LP' Missing parentheses

CALL ATTACH (‘PROBFILE' 'FILETAPE') Parameters

not separated by commas

The parameter list of a procedural CALL may make use of
a continuation card as in

CALL ATTACH ('PROBFILE!,
X'FILETAPE', CARD, NEW)

Note that a field must not be broken in the middle, and
that the preceding card must end with a comma.

The examples shown below illustrate improper continua-
tion cards for procedure CALL statements,

INVALID CONTINUATION CARDS FOR PROCEDURE
CALL STATEMENT

CALL ATTACH

At least one parameter

X('PROBFILE', 'FILETAPE')

CALL ATTACH (‘PROBFILE"
X,'FILETAPE', CARD NEW)

must be on first card

Preceding card must
end with a comma

ARITHMETIC

The Arithmetic statement is used to initialize or set all
storage~reference variables (CR or user working-storage)
except interrupt (K-type) variables. The Arithmetic state-
ment has the form

srsym = arithex

where
srsym is either a CR or user working-storage
variable.
arithex is an arithmetic expression of the form
variable
constant
+
variable { .} constant
+
variable {,t variable

and in which variable refers to either a CR or a user
working-storage variable,

Mixed mode is allowed between integer and floating-point
computations, but all alpha computations must not mix
modes. An arithmetic expression that contains a

floating-point number will be done in double precision
floating=point arithmetic.

Compare the following tables of valid and invalid Arith-
metic statements,

VALID ARITHMETIC STATEMENTS

ARHS = 'ALOYT
FWO1 = FWO1 + 1
IWNM = 79.0

FWO1 = FWOT * IWNM
ILOGP = IWNM/79

INVALID ARITHMETIC STATEMENTS

Kwolr = 100 K~type cells cannot be defined
with an Arithmetic statement

ARHS = FWO1 Mixed mode not allowed with
alpha type

IWNM = FWO01*IW01+4
Invalid form of arithmetic
expression

ASSIGN The ASSIGN statement is used to initalize

or set an interrupt (K-type) variable, It has the form

ASSIGN stmtno TO kxxx

where
stmtno is any valid statement number (1-9999)
appearing in the control language program.
kxxx is a K-type CR or user working-storage

variable.

The following two statements are correct uses of ASSIGN,

VALID ASSIGN STATEMENTS

ASSIGN 100 TO KMAJER
ASSIGN 20 TO KwO01

This list shows incorrect uses of the ASSIGN statement.

INVALID ASSIGN STATEMENTS

ASSIGN SEVEN TO KWD1

Statement number must
be an integer constant

ASSIGN 100 TO IwO01 Assignment must be

made to a K-type vari-
able only

GO TO The GO TO statement causes the uncondi-
tional transfer of control to the statement specified by the

Control Language Statements 15

statement number after GO TO., The GO TO statement
has the form

GO TO {sfmfno}

kXXX

where

stmino is any valid statement number (1-9999)
appearing in the control language program.

kxxx is a K-type user working-storage variable
that has been defined by an ASSIGN statement,

The two lists below present correct and incorrect uses of
GO T0.

VALID GO TO STATEMENTS

GO TO 100
GO TO KWO1

INVALID GO TO STATEMENTS

GO TO A A is not a K-type user working=-

storage variable

GO TO KMAJER KMAJER is a K-type CR variable,

not a user working-storage variable

W The IF statement makes a conditional transfer of con-
trol to the statement specified by a statement number, It
may be used in the construction of loops. IF has the form

IF (srsym . op. {:::ﬁ::'cnt} } GO TO stmino

where
srsym is either a CR or user working-storage
variable.
constant is a valid constant.

op enclosed by periods, is a two-letter code that
represents one of the following conditions.

Code Condition
GT Greater than
GE Creater than or equal
LT Less than
LE Less than or equal
EQ Equal
NE Not equal
stmino is any valid statement number (1-9999)

appearing in the control language program.

When IF is executed, the expression within the parentheses
is evaluated first. If it is true, control is transferred to the
specified statement number, If it is not true, control is
passed to the next statement in the program sequence.

16 Control Language Statements

Mixed mode is allowed if integer and floating-point quan-
tities are involved. Mixed mode is not allowed if an alpha
quantity is used.

The sample IF statements below are correct.
VALID IF STATEMENTS

IF (FOBJWT . GT. IW41)GO TO 30
IF (ARHS .EQ. '‘ROWS') GO TO 150

These IF statements are incorrect,
INVALID IF STATEMENTS

IF (ARHS .EQ. FW01) GO TO 20 Mixed mode is not
allowed if alpha quantity invelved

IF (IWO1 LT 7) GO TO 10 LT must be enclosed in
periods

IF (FW75) 10, 20, 30 This form of IF statement is not
allowed in this control language

RETURN The RETURN statement is used to return control
to a procedure that has created an interrupt. When an inter-
rupt occurs, control will be given to the statement whose
number has been assigned to the corresponding CR interrupt
(K-type) variable for that particular condition. After the
number, it may be desired to return to the procedure that
caused the interrupt. The RETURN statement has the form

RETURN

An example of interrupt processing using a RETURN state-
ment is shown below,

ASSIGN 150 TO KINV
IFREQI = 50
CALL OPTIMIZE

150 CALL INVERT
RETURN

Note that OPTIMIZE will interrupt for an INVERT every
50 iterations. Control will be transferred to statement
150 which is a CALL for INVERT, and following the
INVERT, control will be transferred to OPTIMIZE via
RETURN,

EXIT The EXIT statement is a special type of statement
used in the FMPS control language. Like the RETURN state~
ment, the EXIT statement is concerned with interrupt pro-
cessing. After receiving an interrupt, it may not be desir-
able to return to the procedure causing the interrupt. The
EXIT statement may be used to exit the procedure and to
continue processing with the statement following the

procedure CALL statement that triggered the interrupt.
EXIT has the form

EXIT

An example of interrupt processing using an EXIT statement
is given below,

ASSIGN 200 TO KNFS
CALL OPTIMIZE

200 CALL OUTPUT (BYROWS, ROWS, LISTI)
EXIT

Note that if no feasible solution condition is encountered
by OPTIMIZE, control is transferred to statement 200 to

output the infeasible rows, and the following EXIT state-
ment will cause control to be transferred to the statement

after CALL OPTIMIZE,

WRITE The WRITE statement (not to be confused with
the standard FORTRAN WRITE statement) may be used fo
display the current value of any CR or user working-storage
variable on the system output device. The variable name
and its value are printed. The WRITE statement has
the form

WRITE srsym

where

srsym is either a CR or user working-storage ref-
erence symbol,

Notice that only one symbol may be referenced on a
WRITE statement.

Some uses of WRITE are shown below.

AWO01 = 'EXAMPLE' Printout will contain

WRITE AWO1 AWO1 = EXAMPLE
FWQ7 = . 2365D3 Printout will contain
WRITE FW07 FW07 = 236.5

TITLE This statement, which is a special FMPS control
language statement, provides a page heading on each page
of the output praduced by execution of the control program,
The TITLE statement has the form

TITLE heading

where

heading is a string of literal alphanumeric char-
acters that terminate by column 72,

The title is printed out as shown below

TITLE THIS IS THE TITLE,

STOP The STOP statement terminates execution of the
control program. The STOP statement has the form

STOP

END The END statement is a nonexecutable statement
that defines the end of g source program for the compiler
and must be the last statement of every program. Since
the END statement is not executable, it should have a
statement number. END has the form

END

SAMPLE FMPS PROGRAM

Figure 5 shows an example of a typical FMPS control
language program.

Control Language Statements 17

nonon

0 0O 00

(@]

(@]

0

1000

1010

noono o0 00 0

2000

0ono0n

2100
2110

[eNaXe]

2200

DEFINE PAGE TITLE

TITLE FMPS CONTROL LANGUAGE EXAMPLE

ENTER LINEAR PROGRAMMING OPERATING MODE
CALL ENTER(LP)

INITIALIZE MAJOR AND MINOR ERROR INTERRUPTS
ASSIGN 1000 TO KMAJER

ASSIGN 1010 TO KMINER

CALL DEVICE(*DISC1',DISC,'B")
CALL DEVICE('DISC2',DiIsC,'C')
CALL DEVICE('D1SC3',DISC,'D")
CALL DEVICE('D1SC4',DISC,'E")

ATTACH INTERNAL FILES MATRIX, INVERSE,UTIL1, UTIL2 TO THE SYMBOLIC
DISC UNITS DISC1, DISC2, DISC3, DISC4

CALL ATTACH(MATRIX, 'DISC1")

CALL ATTACH(INVERSE, ‘DISC2")

CALL ATTACH(UTIL1, 'DISC3")

CALL ATTACH(UTIL2, 'DISC4)

DEFINE NAME OF INPUT DATA DECK

ADATA = 'PLANTY'

INPUT THE LP MATRIX

CALL INPUT

DEFINE NAME OF RHS AND OBJECTIVE FUNCTION ROW

ARHS = 'RHS1!

AOBJ = 'COSTROW!

OUTPUT BYROWS, THE NON-ZERO ELEMENTS OF INPUT MATRIX
CALL OUTPUT(BYROWS)

INITIALIZE OPTIMIZE INTERRUPTS KINV, KNFS, KUBS
ASSIGN 2000 TO KINV

ASSIGN 2100 TO KNFS

ASSIGN 2200 TO KUBS

SET INVERSION FREQUENCY TO 100
IFREQI = 100

OPTIMIZE INPUT MATRIX

CALL OPTIMIZE

OUTPUT THE OPTIMAL SOLUTION
CALL SOLUTION

TERMINATE RUN

STOP

PROCESS MAJOR ERROR INTERRUPT BY TERMINATING RUN
STOP

PROCESS MINOR ERROR INTERRUPT BY EXITING PROCEDURE CAUSING IT
EXIT

PROCESS INVERT INTERRUPT BY CALLING INVERT AND RETURNING TO
PROCEDURE REQUESTING IT.

CALL INVERT

RETURN

PROCESS NO FEASIBLE SOLUTION INTERRUPT BY OUTPUTING THE INFEASIBLE
ROWS, PUNCHING THE CURRENT BASIS STRUCTURE, AND TERMINATING RUN
CALL OUTPUT(BYROWS, ROWS, LISTI)

CALL BASISOUT

STOP

PROCESS UNBOUNDED SOLUTION INTERRUPT BY OUTPUTING THE UNBOUNDED
COLUMN, PUNCHING THE CURRENT BASIS, AND TERMINATING RUN,

CALL OUTPUT(BYCOLS, COLS, LISTU)

GO TO 2110

END OF CONTROL PROGRAM

CENIDY
CiNw

18

Sample FMPS Program

Figure 5. Sample FMPS Control Language Program

4. BASIC FMPS PROCEDURES

This chapter describes those FMPS procedures that are avail-
able under all FMPS operating modes, These operating pro-
cedures perform the following functions.

e Establish the operating mode.
e Define input/output devices,
e Assign files o input/output devices.

o Define selection lists.

FMPS operating procedures and their functions are given in
Table 9 below.

Table 9. FMPS Operating Procedures

Procedure Purpose

ENTER Establish the operating
mode.

DEVICE Defines storage media for
run,

ATTACH Attaches symbolic files to

DCBs.

LOADLIST Inputs names and/or masks to

be used as a selection list.

OPERATING PROCEDURES REPERTCIRE

Each of the procedures outlined in Table 9 above will be
explained in detail in the following paragraphs.

ENTER The ENTER procedure establishes the operating
mode for FMPS, Therefore, it must be the first procedure
used. The mode may not be changed during a run. The
following list contains codes for parameters currently avail-
able for ENTER. One of the following parameters must be
specified.

Parameters Explanations

LP FMPS establishes the linear
programming operating mode,

SEP FMPS establishes the separable

programming operating mode.
The following interrupt may occur through misuse of ENTER,

Interrupt Causes

KMAJER 1. Unrecognizable parameter,

2. Operating mode already
established.

DEVICE The DEVICE procedure defines magnetic tapes
and RAD files to be used as storage media during the FMPS
run, This procedure contains parameters informing FMPS

of the data control block (DCB) to be used with the file or
tape and the organization of the file (consecutive-sequential
or keyed direct-access). This data is given to BPM via the
IASSIGN control command; the DEVICE procedure passes

it to FMPS,

Symbolic units must be defined by a call for DEVICE before
FMPS files can be attached to them. A symbolic unit may
be defined only once during a run.

DATA CONTROL BLOCKS

The data control blocks for use with FMPS are included in
the system at installation. Nominally the system is built to
the maximum of 10 DCBs whose namesare F:1,F:2, . . .,F:10.
Thus, ASSIGN cards for a run are restricted to these DCBs.
In addition, the F:1 DCB is preempted by FMPS in the stor-
age of the control language programs. However, any of
the remaining DCBs may be assigned to either tape or RAD.
RAD DCBs may be organized sequentially or asdirect-access.
The internal FMPS file INVERSE should always be a RAD
file and as such must be a keyed direct-access file. Note
that the !ASSIGN control command designates the physi-
cal location (RAD or tape) of the data transmitted via a
DCB.

DEVICE ARGUMENT

The DEVICE procedure requires three arguments, as in

TAPE
'DISC,

CALL DEVICE (‘symbolic unit' { } 'DCB key')

where

'symbolic unit' specifies the symbolic unit defined
by DEVICE to which internal and communication
files may be attached.

TAPE indicates that the file or tape was specified
as consecutive-sequential on the !ASSIGN card.

DIsC Indicates that the file was specified as
keyed direct-access on the !ASSIGN card.

'DCB key" is one of the following codes that
specify the DCB name to be used.
Code DCB Name
'B! DCB F:2
'c DCB F:3
a DCB F:10

For example, the procedural call CALL DEVICE ("INVS',
'C') would define symbolic unit 'INVS' to be a RAD file
with keyed direct-access organization, to be driven via

the F:3 DCB.

Basic FMPS Procedures 19

ATTACH The ATTACH procedure attaches symbolic
files to DCBs, There are two classes of files that must

be attached, The first class consists of files reserved for
internal use by FMPS, All internal files have preempted
names recognizable as keywords such as MATRIX, INVERSE,
efc, (refer to Table 7). The second class of files consists of
files used for communications between the user and FMPS,
The user assigns symbolic names (eight or less characters
enclosed by quotation marks) to communication files,

When attaching FMPS internal files to DCBs, ATTACH re-

quires the use of two parameters, For example,
CALL ATTACH (INVERSE, 'SYMB1')
assigns internal file INVERSE to the symbolic unit'SYMBI1',

When attaching communication files to symbolic units ATTACH
requires the use of four parameters, The third parameter (which
is not required for internal FMPS files) describes the mode
of the file, The mode may be specified as CARD, imply-
ing 80-column card image format, or FORTRAN, implying
standard communication format, The fourth parameter,
OLD or NEW, specifies whether the tape has previously
been prepared by a program (or FMPS) and contains infor=-
mation to be preserved (OLD), or whether the tape is a
new tape without information to be saved on it (NEW), If
the NEW parameter is specified, FMPS writes a pseudo
end-of-file record at the beginning of the tape (NAME
zzzzzzzz, ENDATA). If it is an outputfile, it is de-
fined as NEW. It is imperative that, if a communication
file (whether CARD or FORTRAN) is defined, NEW or
OLD follow the file definition.

Symbolic files may be reattached to different DCBs during
a run, If the INVERSE file is reattached, an INVERT call
must be made following the latest ATTACH, A common
use of the reattach facility is in connection with the RE-
START file. For example

CALL ATTACH (RESTART, = 'TAPE1")

CALL RESTORE

CALL ATTACH (RESTART, 'TAPE2")

CALL SAVE
Also, the statement
CALL ATTACH('"OUTFILE', "COMMTAPE', FORTRAN, NEW)

assigns communication file 'OUTFILE' to DCB 'COMMTAPE!

in standard communication format,
The following interrupt may occur within ATTACH.

Causes

KMAJER 1.
2. Internal FMPS file assigned as

communication file,

Interrupt

Symbolic unit not defined.

20 Operating Procedures Repertoire

Interrupt Causes

3. Unrecognizable parameter.

4, Internal random=-access file assigned
to sequential-access device,

5. Communication file not specified
as OLD or NEW.

LOADLIST The LOADLIST procedure is responsible for
the input of a list of names and/or masks from cards or com-

munication files to be used as a selection list during output
of procedures such as SOLUTION, OUTPUT, etc.

The first parameter of the procedure defines which of two
lists, LISTR or LISTC, is fo be loaded. LISTR is the list
used to contain the names and/or masks for row selection
or exception, LISTC is the list used to contain the names
and/or masks for column selection or exception,

The names in a list correspond to the name of a row or col-
umn in the matrix, Masks are used to represent classes of
rows or columns that have unique character configurations
in their names, A mask is composed of eight characters,
The characters in the mask are matched, position by posi-
tion, with a row or column name. If all positions match,
then that row or column name is considered part of the
selection list, If one or more characters within the mask
are an asterisk(*), that position(s) will match with the
corresponding position(s) of any row or column name. For
example,

CRUDE***

is @ mask that considers any row or column name having
CRUDE as its first five characters as part of the selection
list,

Input to LOADLIST is from card images on the standard card
reading device unless the FILE parameter is specified, in
which case the third parameter must be the name of the file
on which the data resides. The data format for the LOAD=-
LIST procedure is described in Chapter 5.

The communication region variable ADATA must be initial-
ized before the call for LOADLIST, It contains the name
of the data deck for data reading procedures such as INPUT,
REVISE, etc. ADATA is also used by data outputting pro-
cedures, such as BASISOUT, to name output data deck. It
specifies the name that appears on the NAME card of image
input. (Refer to Chapter 5 for general data formats.)

The parameters available to LOADLIST are:

Parameter Explanation

LISTR Specifies that row selection list
is to be loaded. If LISTR is not
specified, LISTC must be.

LISTC Specifies that column selection list

is to be loaded. If LISTC is not
specified, LISTR must be.

FILE Specifies that data is on file 'file-
name' (card format only).

Parameter Explanation

filename' Symbolic name of file, including
quotation marks, on which data
resides,

The FILE and 'filename' parameters are optional.

The following interrupts may occur within LOADLIST,

Interrupt Causes

KMAJER 1. Unrecognizable parameter.
2, Undefined 'filename',

3. NAMES or MASKS data not
grouped together,

4. Unrecognizable data indicator.

Irrecoverable input/output error on

Interrupt Causes
KIOER

file,
KMINER

Core memory area exceeded by
list. Remainder of data cards
ignored.

Operating Procedures Repertoire

21

5. DATA CARD FORMATS AND DECK ORGANIZATION

This chapter describes data card formats and data deck
organization applicable for the various procedures (INPUT,
REVISE, BASISIN/BASISOUT, and LOADLIST) in all FMPS
operating modes. It also describes acceptable nonstandard
data formats.

STANDARD CARD AND DECK FORMATS FOR INPUT

The data file for the INPUT procedure contains four types
of cards in all cases.

1. NAME card

2. Indicator cards
3. Data cards

4. ENDATA card

Comment cards, identified by an asterisk (*) in column 1,
may be inserted anywhere in a data deck.

NAME CARD

The first card of a data deck is always a NAME card. The
NAME card gives a user-specified name to the data decks

so that the data may be uniquely identified from the con-

trol program. NAME has the following format,

Columns Description

1-4 NAME: card identification.

5-14 Blank

15-22 User~-assigned name: from one to eight
characters in length.

23-80 Blank

INDICATOR CARDS

The INPUT data deck consists of data cards grouped accord-
ing to the type of data they contain. A group of cards con-
taining the same type of data is called a chapter. The first
card of a chapter is always an indicator card, which identi-
fies the type of data in that chapter. The optional and
required types of data appearing in a data deck for the
INPUT procedure are:

Data Type Status

ROWS Required
SPRICES Optional
COLUMNS Required
RHS Required
RANGES Optional
BOUNDS Optional

22 Data Card Formats and Deck Organization

The format of indicator cards is given below.

Columns Description
1-7 Data type: one of the six types shown
above.
8-80 - Blank
DATA CARDS

Data cards are divided into six fields. The fype of data
card determines the confent of each field, but all datacards
follow the same general format. The six fields of a data
card are outlined below.

Columns Description

1 Blank or *. If asterisk is present, it indi-
cates that this is a comment card, which
may be inserted anywhere in the data
deck.

2-3 Field 1: code for type of row constraint
or type of bound (see ROWS and
BOUNDS cards).

5-12 Field 2: name of from one to eight alpha-
numeric and special characters.

15-22 Field 3: same as field 2 above.

25-36 Field 4: value of up to twelve characters,
including decimal pointf. Sign specifica-
tion is optional; if unspecified, it is
assumed positive.

40-47 Field 5: same as field 2 above.

50-61 Field 6: same as field 4 above.

ENDATA CARD

The ENDATA card, which simply indicates that the end of
the data deck has been reached, has the following format:

Columns Description
1-6 ENDATA
7-80 Blank

DATA DECK ORGANIZATION

Figure 6 shows the organization of a complete INPUT data
deck. Note that the dashed lines indicate optional cards
and decks.

_lENDATA

1 BOUNDS data

RANGES data

[== —— — - -

I RANGES N

- ——————

RHS data

[e L d

COLUMNS data
COLUMNS

ROWS data

NAME

Figure 6. Data Deck Organization for INPUT
ROWS DATA CARDS

ROWS cards specify the name to be assigned to the rows of
the matrix, as well as the type of constraint (equality or
inequality) represented by the row. The ROWS data card
format is shown below.

Columns Description

2-3 Field 1: type of constraint as specified
by the following codes:

Code Meaning

BN or Nb

No constraint (change or
objective row)

%G or Gb Greater than or equal to
bLor Lb Less than or equal to
6E or Eb Equality

Columns Description

5-12 Field 2: name of the row, where blanks
are considered part of the name.

15-22 Field 3: blank
25-36 Field 4: blank
40-47 Field 5: blank

50-61 Field 6: blank

SPRICES DATA CARDS

SPRICES (slack prices) cards specify the price or prices to
be associated with the slack vector of a row. The slack
prices must be specified by slack: that is, when one price
is given for a slack, any other prices for the same slack
must be entered before the next slack is referenced. The
slack prices must be entered in the same order as the slack
name appears in the rows section. The SPRICES data card
format is shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the slack vector, which
is identical to the name of the row with
which it is associated.

15-22 Field 3: name of the cost row to which
the price is associated.

25-36 Field 4: value of the slack price.

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

COLUMNS DATA CARDS

COLUMNS cards specify the names to be assigned to the
columns (structural variables) in the LP matrix and define
the actual values of the matrix elements in terms of column
vectors. The mairix elements must be specified by column;
that is, when one element is given, all other nonzero ele-
ments in that column must also be entered before another
column is mentioned. Zero entries should not be specified,
since they will be filled in automatically by the system.
The COLUMNS data card format is shown below.

Columns Description
2-3 Field 1: blank
5-12 Field-2: name of the column that is to

contain the elements specified in the
field that follow.

Data Deck Organization 23

Columns Description

15-22 Field 3: name of a row in which an elex
ment is fo be entered.

25-36 Field 4: value of the element to be
entered in the row and in the column of
field 2.

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

RHS CARDS

RHS cards specify the names of the right-hand-side constraint
vectors or change vectors {used in parametric programming).
They define, in terms of column vectors, the values of these
elements. The righf-hand-side elements must be specified
by RHS; that is, when one element is given, all other non-
zero elements in that RHS must also be entered before
another RHS is mentioned. The RHS data card format is
shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the right-hand-side
(RHS) vectors or change vectors.

15-22 Field 3: name of the row in which an
element is to be entered.

25-36 Field 4: value of the element to be
entered in the row and in the RHS of
field 2.

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

RANGES DATA CARDS

Range constraints are used when a row is to represent both
a greater-than inequality and a less~than-or-equal-to
inequality. When none of the rows have suchdouble limits,
range constraints are not used.

One of these limits is given in the normal manner when both
upper and lower limits are desired. The type of row con-
straint is specified in the ROW data, and one limit (upper
or lower) is specified in the RHS data. The other limit
specified in this section of the data is the allowable magni-
tude by which the right-hand-side may vary from the value
previously specified.

If b; is the value given in the RHS section, the range r is
specified as follows:

Resultant Upper Resultant Lower
Type Limit on Right- Limit on Right-
of Row Hand-Side Hand-Side
G b, +r. bi
L b. b, -,
i } 1

24 Data Deck Organization

The set of ranges is defined as a column vector with a name
specified by the user. Only one vector of ranges will be
loaded by the INPUT procedure. If more than one is pres-
ent, the additional vectors will be punched in REVISE
format.

The RANGES data card format is shown below.

Columns Description

2-3 Field 1: blank

5-12 Field 2: name of the column of ranges.

15-22 Field 3: name of a G or L row to which
this range is to be applied.

25-36 Field 4: value of the range (r;).

40-47 Field 5: optional and used like field 3.

50-61 Field 6: optional and used like field 4.

BOUNDS DATA CARDS

BOUNDS data cards impose limits on the values which the
activities, or "structural variables”, may assume. If none
of the variables are bounded, this section of input is not
needed.

When bounds are desired, they are entered as a row vector
with a name specified by the user. Bounds are automati-
cally set at 0 and + « for all columns not specified in a
BOUNDS card. Only one vector of bounds will be loaded
by the INPUT procedure. However, if more than one is
present, the additional vectors will be punched in REVISE
format.

Within a given bounds row vector, the column {structural
variable) names must appear in matrix order (that is, the
same order in which column names appear in the COLUMNS
section).

The user may specify both an upper and a lower bound, a
lower bound only, or an upper bound only. When a single
bound is specified, the other bound will remain as + @ or 0.
When both upper and lower bounds on a single variable are
desired, they must be entered on separate cards. Possible
combinations are:

LO - UP

LO - PL

Since an upper bound of +® is automatically generated, PL
cards are ignored by INPUT.

To fix a variable at zero, the code FX with a value of zero
must be used.

Lower bound values may be positive or negative; upper
bound values must be positive.

The BOUNDS data card format is shown below.

Columns Description

2-3 Field 1: type of bound as specified by
the following codes:

Code Meaning

LO Lower bound
up Upper bound
FX Fixed value
FR Free variable (-~ @ to +)

PL Upper bound is + @
5-12 Field 2: name of the row of bounds.

15-22 Field 3: name of the column with which
the variable to be bounded is associated.

25-36 Field 4: value of the bound for an LO,
UP, or FX card; otherwise blank.
40-47 Field 5: blank.

50-61 Field 6: blank.

NONSTANDARD CARD FORMATS FOR INPUT

Three nonstandard input formats are acceptable to the
INPUT procedure when the parameter SHARE is used. They
are:

1. LP/90/%4 LP
2. UNIVAC 1108 LP

3. CDM4 LP

LP/90/94 SHARE FORMAT

The INPUT format when using LP/90/94 LP is

CALL INPUT (SHARE, 'LP90")

where the LP90 parameter must be enclosed by single quo-
tation marks.

LP/90/94 CHAPTERS

The following chapters of input information will be processed

when using LP/90/94.

ROW 1D FIRST B
BASIS NEXT B,kkkk
MATRIX ECF

RHS NAMES

FMPS assigns the RHS name from the contents of columns

7 to 12 of the data cards for the FIRST B or NEXT B chapter.
If these columns are blank for the FIRST B chapter data
cards, the name *Bl6bb (where b represents a blank) will be
assigned to this RHS. If columns 7 to 12 are blank for the
NEXT B chapter data cards, the RHS vectors will be named
*Bkkkk, where kkkk are characters copied from the NEXT
B,kkkk header card.

BASIS DATA CHAPTER

When the BASIS chapter header is encountered by the INPUT
procedure, its data is punched on cards in o format accept-
able to the BASISIN routine. No further processing of
BASIS data occurs, but the punched cards can be loaded as
a part of the FMPS input to a subsequent run. The BASIS
data chapter can appear in any order relative to the other
chapter headings in the input stream.

ORDER OF INPUT

The following data chapters are directly processed upon in-
put and must appear in the order listed.

Data Type Status

I. ROW ID Required
2. MATRIX Required
3. FIRST B Required
4. NEXT B,kkkk Optional

CARD FORMAT

ROW ID. The first card of the ROW ID chapter is a ROW
ID indicator card. The card format is shown below.

Columns Description

1-6 ROWHID: where the characters 6 rep-
resent a blank. This parameter is pres-
ent on the first ROW ID card only;
columns 1 to 6 are blank on all other

ROW ID cards.

12 Row type: where the type is specified by
one of the following codes.

Code Row Type

+ Less than or equal to

- Greater than or equal to
0 Equal to

b Indicates a Free Row (for

example, Cost Row)

Nonstandard Card Formats for INPUT 25

Columns Description

13-18 Row name.
24 Row type.
25-30 Row name.
36 Row type.
37-42 Row name.
48 Row type.
49-54 Row name.
60 Row type.
61-66 Row name.

A pair of fields is ignored if both the row type and the row
name are blank. '

MATRIX. The first card of the MATRIX chapter isa MATRIX
indicator card. The MATRIX data is entered column by
column (all coefficients pertinent to one column must be
grouped together) as shown in the format outline below.
Note that only one coefficient can be defined per data
card.

Columns Description

1-6 MATRIX. This parameter is present on
the first MATRIX card only; columns 1 to
6 are blank on all other MATRIX cards.

7-12 Column name.

13-18 Row name.

19-30 Coefficient value; assumed format is

F12.6.

FIRST B. The first card of the FIRST B chapter is a FIRST B
indicator card, This card has FIRSTBB punched in columns
1 to 7. The data format is identical to that for MATRIX.
If columns 7 to 12 are blank on the data cards, the column
(right-hand~-side) wi!l automatically be named *Blbfb.

NEXT B,kkkk. The first card of the NEXT B,kkkk chapter
is a NEXT B,kkkk indicator card. This card has NEXT
B,kkkk punched in columns 1 to 11. The data format is
identical to that for MATRIX; if columns 7 to 12 are blank
on the data cards, the column (right-hand-~side) is auto~
matically named *Bkkki, where the characters kkkk are
copied from the indicator card.

BASIS. The first card of the BASIS chapter is a BASIS indi
cator card. BASIS data cards contain up to five pairs of
names, as shown below.

Columns Description

1-5 BASIS. This parameter is present on the
first BASIS card only; columns 1 to 5 are
blank on all other BASIS cards.

7-12 Variable to enter the basis.

26 Nonstandard Card Formats for INPUT

Columns Description

13-18 Variable to be excluded from the basis.
19-24 Variable to enter the basis.

25-30 Variable to be excluded from the basis.
31-36 Variable to enter the basis.

37-42 Variable to be excluded from the basis.
43-48 Variable to enter the basis.

49-54 Variable to be excluded from the basis.
55-60 Varial#le to enter the basis.

61-66 Variable to be excluded from the basis.

EOF. The EOF card has EOF punched in columns 1 to 3.

UNIVAC 1108 SHARE FORMAT

The INPUT format when using UNIVAC 1108 LP is

CALL INPUT (SHARE, '1108')

where the 1108 parameter must be enclosed by single quo~
tation marks.

UNIVAC 1108 CHAPTERS
The following chapters of input information will be pro-
cessed when using UNIVAC 1108,
DELETE
ROW ID
BASIS
MATRIX
FIRST B
NEXT B,kkkk
SPRICES
EOF
ENDATA

A maximum of 100 column or row names may be input as
part of the DELETE data. A minor error interrupt will occur
if this number is exceeded, and only the first 100 names
will be used.

RHS NAMES

RHS names are formed in the same manner as described for

LP/90/94 data above.

ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

1. DELETE Optional
2. ROW ID Required
3. MATRIX Required
4. FIRST B Required
5. NEXT B, kkkk Optional
6. SPRICES Optional

The BASIS chapter is optional and may appear anywhere in

the input deck. It is processedin the same manner described
for LP/90/94. If the SPRICES chapter is present in the in-
put data and is to be used, the argument 'SPRICES® must be
present in the CALL INPUT argument list, as in

CALL INPUT (SHARE, '1108', 'SPRICES")

when the input source is the card reader, the SPRICES chap-
ter must be placed directly after the ROW ID chapter in the
data deck. When the input source is tape, the SPRICES
chapter may appear at the end.

If SPRICES is used, AOBJ must be set (through the control
language) to the name of the cost row for which the slack
prices apply. This must be done before the call to INPUT.

CARD FORMAT

DELETE. The first card of the DELETE chapter is a DELETE
indicator card. This card has DELETE punched in columns
1 to 6, and contains up to eleven name fields in columns

7-12, 13-18,...,67-72. All blank fields are ignored.

ROW ID, MATRIX, FIRST B, NEXT B,kkkk, and BASIS.
These data formats are identical fo the corresponding data

formats for LP/90/94 SHARE.

SPRICES. The first card of the SPRICES chapter is a
SPRICES indicator card. This card has the format shown
below.

Columns Description

1-7 SPRICES. This parameter is present on
the first SPRICES card only; columns 1 to
5 are blank on all other SPRICES cards.

7-12 Row (slack) name.

19-30 Slack price: assumed format is F12.4.

Pairs for which both fields are blank are ignored. Inclusion
of variable names which do not correspond to any variable
in the matrix will cause an error comment during subsequent
processing of the punched BASIS cards, but will not cause
this run fo be discontinued.

EOF. The EOF card has EOF punched in columns 1 to 3.

ENDATA. The ENDATA card has ENDATA punched in
columns 1 to 6.

CDM4 SHARE FORMAT

The INPUT format when using CDM4 LP is

CALL INPUT (SHARE, 'CDM4')

where the CDM4 parameter must be enclosed by single quo-
tation marks.

CDM4 CHAPTERS

The following chapters of input information will be pro-
cessed when using CDMA4.,

ROW ID
MATRIX
FIRST B
RHS
BASIS
NEWRHS
SECOND
ENDRHS
EOR

EOF

RHS NAMES

FMPS will introduce a new RHS vector in the input matrix
for every redefinition of the RHS vector in the input data.
Upon input, the original RHS vector is automatically named
*B0001; the first revised RHS vector, *B0002; the second
revised vector, *B0003, etc. Any of the vectors can be
specified for solution by assigning its name to the ARHS
communication cell, for example, ARHS = '*B0002".

ORDER OF INPUT

The following data chapters are directly processed upon
input and must appear in the order listed.

Data Type Status

1. ROW ID Required
2. EOR Optional
3. MATRIX Required
4. EOR Optional
5. FIRST B OR RHS Required

Nonstandard Card Formats for INPUT 27

Data Type Status

6. EOR OR ENDRHS Optional
7. NEWRHS OR SECOND Optional
8. EOR OR ENDRHS Optional
9. EOI = ENDATA Required

The BASIS chapter is optional and is treated in the same
manner as it is in LP/90/94 format.

CARD FORMAT

All data formats for CDM4 SHARE are identical to those
specified for LP/90/94 except ROW ID.

The first card of the ROW ID chapter is the ROW ID indi-

cator card. This card has the format shown below.

Columns Description
1-6 ROWHID: This parameter is present on
the first ROW ID cardonly; columns 1 to
6 are blank on all other ROW ID cards.
12 Row type: where the type is specified
by one of the following codes.
Code Row Type
+ Less than or equal to
- Greater than or equal to
0] Equal to
Indicates a Free Row (for
example, Cost Row)
13-18 Row name.
24 Row type.
25-30 Row name.
36 Row type.
37-42 Row name.
48 Row type.
49-54 Row name.
60 Row type.
61-66 Row name.

Row types and names on ROW ID data cards are interpreted
as outlined below.

1. If columns 19 to 24 or columns 12 to 18, or both, of
the data card are blank, the card is ignored.

2. If columns 19 to 24 and columns 12 to 18 of the data
card are nonblank, the data is read as follows:
Column 12 Row type.

Columns 13-18 Row name.

28 REVISE Data Cards

NAME AND ENDATA CARDS

Data may be read from cards or tape. When read from cards,
the data must be preceded by a standard NAME card and
must end with an ENDATA card. When read from tape, no
NAME or ENDATA card is required.

OUTPUT

The input data may include NAME cards other than the ones
mentioned above. FMPS will ignore the NAME card and
its associated data. However, a listing of this ignored data
is produced on the output medium. It is listed shifted to the
right beginning in print position 30.

The chapter headings, but not the associated data, which
are processed by FMPS are listed on the output medium left-
justified as they are read from the input stream.

SLACK INDICATORS ON ROWS CARDS

The row type is coded as shown for the ROW ID indicator

card above. If cost rows are not specified with a blank
slack indicator, the REVISE procedure must be called fol-
lowing the INPUT procedure to define the cost rows as

nonrestraining.

REVISE DATA CARDS

In the control language program, o procedure REVISE modi~
fies data previously processed by INPUT.

Essentially, the REVISE data deck is identical to the INPUT
data deck. It is composed of the same six chapiers of
data: ROWS, SPRICES, COLUMNS, RHS, RANGES, and
BOUNDS. However, only those chapters to be actually
changed are included. Within each chapter, four types of
revisions are possible:

MODIFY
DELETE
BEF ORE
AFTER

These revisions are stated on data cards similar to those used
for INPUT. First, the chapter to be revised is identified by
a chapter indicator card. Kinds of changes to be made are
then specified by REVISE control cards (MODIFY, DELETE,
BEFORE, and AFTER) and by actual data cards composing
the changes. This sequence is repeated for each section to
be revised. The use of REVISE is subject to the following
conditions.

1. Modifications may be made in any order subject to
the rule forbidding splitting of modifications inagiven
vector.

2. If an existing nonzero eiement is o be changed fo
zero, it must be defined with the value of zero in
the REVISE data deck.

3. Any new vector fo be added must be given a name that
is different from the name given to any old vector, even
if that vector is to be deleted.

4. Ifan E-, L-, or G~type row is modified intoan N-type
row, range elements in the row are automatically
removed.

5. A modified row or bound element must be entirely re-
defined, that is, a row must have its type of constraint
specified. A bound element must have both its [ower
and upper limits specified even if only one is modified.

6. To keep each individual modification in core, the
REVISE deck should not include more than 100 data
cards for any individual revision type (MODIFY,
DELETE, etc.) within a chapter. If the deck is too
large, the KMAJER interrupt is taken. If revisions are
extensive enough to require more than 100 data cards
for any individual revision type within a chapter, the
revision data should be separated into individual decks
of proper size, and one call for REVISE should be made
for each deck. NAME and ENDATA cards must be
inserted before and after each deck.

7. If a row is added by using BEFORE or AFTER in the
ROWS section, values are entered in this row for exist-
ing columns by using MODIFY.

ROWS CARDS FOR REVISE

MODIFY The MODIFY chapter indicator card signifies
that the row definition cards that follow redefine the exist-
ing type of row. The command word MODIFY is punched
in columns 2 to 7, as in

MODIFY

DELETE The DELETE chapter indicator card signifies that
the data cards that follow contain the names of existing row
(punched in columns 5 to 12) are to be deleted. DELETE is
punched in columns 2 to 7, as in

DELETE

BEFORE The BEFORE chapter indicator card signifies
that row definition cards that followare tobe inserted before
the row named in the indicator card (specified in columns
15 to 22). If no row is specified, the rows will be inserted
before the first row. BEFORE is punched in columns 2 to 7.
Hence, the card takes the form

BEFORE name

AFTER The AFTER chapter indicator card signifies that
row definition cards that follow are to be inserted after the

row named in the indicator card (specified in columns 15 to
22). 1If no row is specified, the rows will be inserted after
the last row. AFTER is punched in columns 2 to 7. Hence,
the card takes the form

AFTER name

SPRICES CARDS FOR REVISE

Slack prices for any new rows must be defined immediately
following the SPRICES chapter indicator. The format of the
data cards is the same as required by INPUT. Do not use
BEFORE or AFTER indicators.

MODIFY The MODIFY indicator card signifies that the
following data cards define new slack prices for existing
slacks. All prices for an existing slack must be redefined,
even if only one price is modified. MODIFY is punched in
columns 2 to 7, as in

MODIFY

COLUMNS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
following data cards redefine coefficients in existing col-
umns and/or places coefficients in new rows of existing
columns. All modified coefficents for the same column
must be grouped together. The command word MODIFY is
punched in columns 2 to 7, as in

MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing data cards contain the names (in columns 5 to 12) of
existing columns to be delefed from the matrix. DELETE is
punched in columns 2 to 7, as in

DELETE

BEFORE The BEFORE indicator card signifies that the
following data cards define new matrix columns that are to
be inserted in the matrix before the existing column named
in the indicator card (specified in columns 15 to 22). If no
column is specified, the new columns will be inserted before
the first existing column. BEFORE takes the form,

BEFORE name

AFTER The AFTER indicator card signifies that the follow-
ing data cards define new matrix columns that are to be
inserted in the matrix after the existing column named in

REVISE Data Cards 29

the indicator card (specified in columns 15 to 22). If col-
ums 15 to 22 are blank, the new columns will be inserted
after the last existing column. AFTER is punched in columns
2 to 6. The form of the AFTER command is

AFTER name

RHS CARDS FOR REVISE

Revisions to the RHS chapter are the same as for the
COLUMNS chapter with the exception that the name field
(columns 15 to 22) of the BEFORE and AFTER indicator card
refers to names of the RHS vectors.

RANGES CARDS FOR REVISE

Range values for new rows must be first. They may be intro-
duced by BEFORE or AFTER, but neither is necessary.

MODIFY The MODIFY indicator card signifies that the
following data cards redefine a range value on an existing
row. MODIFY is punched in columns 2 to 7, as in

MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing cards contain (in columns 5 to 12) the name of the
row that is to have its range value removed. DELETE is
punched in columns 2 to 7, as in

DELETE

BOUNDS CARDS FOR REVISE

MODIFY The MODIFY indicator card signifies that the
data cards that follow redefine the bounds on existing col-
umns. Note that the bounds on any column must be restated
completely. For example, if only the lower bound was
being changed, any upper bound on that column must be
restated. MODIFY is punched in columns 2 to 7, as in

(MODIFY

DELETE The DELETE indicator card signifies that the fol-
lowing data cards contain (in columns 5 fo 12) the name of
the existing column for which all bounds will be removed.
DELETE is punched in columns 2to 7, as in

(DELETE

30 BASISIN,/BASISOUT Data Cards

BEFORE The BEFORE indicator card signifies that the
data cards that follow define the bounds for new columns.
The BEFORE card should be identical to the BEFORE card
that defined the new columns in the COLUMNS chapter.
BEFORE has the form

(BEFORE name

AFTER The AFTER indicator card signifies that the data
cards that follow define the bounds for new columns., The
AFTER card should be identical to the AFTER card that de-
fined the new columns in the COLUMNS chapter.

BASISIN/BASISOUT DATA CARDS

Data for the BASISIN procedure is the same as the output
from the BASISOUT procedure. As with all data decks, the
data is preceded by a NAME card and terminated by an
ENDATA card. The general form of the data card is shown
below.

Columns Description
2-3 Field 1: two-letter indicator that speci-
fies one of the following actions.
Code Action
XU Remove the variable named in
Field 3 from the basis and sef
it at upper bound. Put the
variable named in Field 2 in
the basis.
XL Remove the variable named in
Field 3 from the basis and set
it at lower bound. Put the
variable named in Field 2 in
the basis.
UL Set the variable named in
Field 2 at upper bound.
Field 3 is ignored.
LL Set the variable named in
Field 2 af lower bound. Field
3 is ignored.
5-12 Field 2: name 1.
15-22 Field 3: name 2.
25-36 Field 4: not used.
40-47 Field 5: not used.
50-61 Field 6: not used.

LL indicators are not necessary if the MODIFY parameter

is not used on BASISIN since all variables will be auto-
matically initialized to lower bound. BASISOUT will not
output any LL indicators.

LOADLIST DATA CARDS

As with all data decks, LOADLIST data is preceded by a
NAME card and terminated by an ENDATA card.

INDICATOR CARDS

The LOADLIST data deck consists of data cards grouped
according to the type of data (names or masks) they con-
tain. A group of cards containing the same type of data is
called a chapter. The first card of a chapter is always an
indicator card which identifies the type of data in that
chapter. Indicator cards contain only one word (NAMES
or MASKS, beginning in column 1) which specifies the type
of data cards that follow.

DATA CARDS

Data cards are divided into ten 8-column fields. Field 1 is
always blank. The ten fields of a data card are outlined
below.

Columns Description

1-8 Field 1: blank

9-16 Field 2: name or mask.
17-24 Field 3: name or mask.

Columns Description

25-32 Field 4: name or mask.
33-40 Field 5: name or mask.
41-48 Field 6: name or mask.
49-56 Field 7: name or mask.
57-64 Field 8: name or mask.
65-72 Field 9: name or mask.
73-80 Field 10: name or mask.

NAMES DATA CARDS

NAMES cards specify the names of rows or columns in the
selection list. Each data card contains up to nine names
in Fields 2 to 10. Field 1 is always blank. If a field other
than 1 contains all blanks, it is ignored.

MASKS DATA CARDS

MASKS cards specify the masks for selecting rows or columns.
Each data card contains up fo nine masks in Fields 2 to 10.
Field 1 is always blank. If a field other than 1 contains
all blanks, it is ignored.

LOADLIST Data Cards 31

6. LINEAR PROGRAMMING OPERATING MODE

Use and operation of procedures in the linear programming
mode will be described in this chapter. The procedures
are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservafion and Restoration

(Parametric programming, an optional procedure available

for use in the linear programming operating mode, is de-
scribed in Appendix A.)

INPUT PHASE

The input phase consists of two procedures, INPUT and
REVISE. An outline of each is given in Table 10 below.

Table 10. Input Procedures

Procedure Purpose

INPUT Initially states the LP
matrix.

REVISE Makes revisions to the
LP matrix.

INPUT The INPUT procedure specifies a linear pro-
gramming matrix to FMPS. This procedure reads the input
data and converts it into a compact intenal representation
on file MATRIX. The following internal files {see Table 7)
must be defined before the call for INPUT,

1. MATRIX
2. INVERSE
3. UTIL
4. UTIR2

Also, if INPUT's data are on file, the user'scommunication
file must be defined too.

The input file may consist of more than one reel of tape.
The primary input unit must be defined through the DEVICE
and ATTACH procedures. The second unit will be the next
reel specified in the BPM assign control command. The
occurrence of o tape end-of-file on the input tape causes
switching to the alternate input tape.

For example, consider the case where input consists of three
reels of tape, numbered 104, 59, and 73. The user pro-
vides ASSIGN statements to mount tapes 104, 59, and 73
on the primary input unit in that order. He also provides

32 Linear Programming Operating Mode

a DEVICE and ATTACH statement to define the primary
input unit, asin

IASSIGN F:6, (DEVICE, MT), (INSN, 104,59, 73)....
CALL DEVICE ('TAPE6', TAPE, 'F')
CALL ATTACH ("MYFILE', 'TAPE6', FORTRAN, OLD)

CALL INPUT (FILE, 'MYFILE")

The data deck setup for the INPUT procedure is shown in
Chapter 5.

The INPUT procedure will also accept input in the SHARE
formats of other LP systems. These include 1108 LP data,
LP/90/94 data, and CDM4 LP data. Chapter 5 contains

detailed information about SHARE input formats.

The following CR variables must be initialized before the

call for INPUT.
CR Variable
ADATA

Explanation

Contains the name of the data deck for
data reading procedures such as INPUT
and REVISE. Also used by data out-
putting procedures such as BASISOUT
to name output data deck.

APBNAME The name to be assigned to the LP

problem,

Optional parameters for INPUT are given below.

Parameter Explanation

SHARE Indicates that the input is in SHARE
format and not in standard FMPS format,
If this parameter is not present, stan-
dard FMPS format is assumed.

'1108’ Input isin UNIVAC 1108 LP SHARE for-
mat. The quotation marks are required.

'LP9O" Input is in LP/90/94 SHARE format. The
quotation marks are required.

'CDM4! Input is in CDM4 SHARE format. The
quotation marks are required.

'SPRICES' Indicates that the slack prices chapter
is present in the input data and is to be
used, Used only with SHARE.

FILE Indicates that the input data are to be

found on file 'filename'. If the param-
eter is not used, INPUT data are as-
sumed to be on the standard card input
device.

Parameter Explanation

'filename' The symbolic name of the communica-

tion file on which the input data re-

side. The quotation marks are required.

The following interrupts may occur within INPUT.
Inferrupt Causes

KMAJER 1.

Invalid parameter.
2. Input data not found.

3. Minimum required input not found
(ROWS, COLUMNS, and RHS).

4, Undefined files.

Rows chapter exceeds available
memory.

6. FILE 'filename' undefined.
KMINER 1. Duplicate columns. The duplicate
column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators

in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

KIOER 1. An irrecoverable input/output er-
ror has occurred.

2. Insufficient storage allocated for
internal files.

REVISE The REVISE procedure modifies a matrix ac-
cording to the input data from the standard card input
device or from an internal communication file. Any ele-
ment of the matrix can be modified, deleted, or inserted.

REVISE requires that the matrix to be revised be currently
loaded in the MATRIX file, and that all of the standard
FMPS internal files be defined. Initial loading of the
matrix may be performed by INPUT or RESTORE. Matrix
information is not destroyed-or modified during execution
of any other procedure except for CRASH (see "Optimiza-
tion Phase" later in this chapter), which may alter the
bound status of certain variables and set certain equations
nonrestraining if the MODIFY parameter is used. CR vari-
able ADATA contains the name of the REVISE data deck
or identification record name if the data is on file.

Calling the REVISE procedure causes the problem to be
initialized to a slack basis. If REVISE is called at a
stage of the problem where the basis is not a slack basis,
it may be desirable to preserve the current basis (BASISOUT)
prior to the call for REVISE, and to reinstate the current
basis following the call for REVISE (BASISIN and INVERT).

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter Explanation

FILE Indicates that the input data for
REVISE are on the file 'filename’.

'filename’ The symbolic name of the communica-

tion file on which the input data
resides.

The following interrupts may occur within REVISE.

Interrupt Causes

KMAJER 1.

Invalid parameter.

2. Input data not found.
3. Undefined files.
4

ROWS chapter exceeds available
memory.

5. No matrix exists to REVISE.

KMINER 1. Duplicate columns. The duplicate

column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

KIOER 1. An irrecoverable input/output er-

ror has occurred.

2. Insufficient storage allocated for
internal files.

OPTIMIZATION PHASE

The optimization phase contains three procedures, OPTI-
MIZE, INVERT, and CRASH. An outline of each is
given in Table 11 below.

Table 11. Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find an optimal, feasible

solution to the existing matrix.

INVERT Restates the product form of the in-
verse in terms of the minimum num-
ber of transformation required to
state the basis.

CRASH Attempts to find a better initial
basis.

Optimization Phase 33

OPTIMIZE The OPTIMIZE procedure attempts to find
an optimal feasible solution to the linear programming
model. If the model has no feasible solution or the
solution is unbounded, OPTIMIZE causes the KNFS or
KUBS interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. (Infeasibility is defined as the amount
by which a basis variable is below its lower bound or above
its upper bound.} The function of the composite PI vector
is either to maintain or to move toward optimality while
achieving feasibility. CR cell FCMPDJ is the compositing
factor which determines the balance between the drive for
optimality and/or feasibility. As an example, a value of
0.5 for FDMPDJ implies a balanced driving force between
optimality and feasibility, while avalue of 0.0 implies total
disregard for optimality. When a balanced driving force is
requested, OPTIMIZE systematically reduces FCMPDJ by
0.125 if the drive for feasibility is insufficient.

CR variable ITWGHT is used to weight individual infeasi-
bilities. The standard setting for IWGHT is 0, which im-
plies that all infeasibilities are given equal weight. If
IIWGHT isset to -1, individual infeasibilities are weighted
by the amount by which they are infeasible. If IIWGHT is
set to +1, individual infeasibilities are weighted by the re-
ciprocal of the amount by which they are infeasible.

Setting IIWGHT equal to =1 during part of the first phase
of OPTIMIZE (the phase which attempts to eliminate all
infeasibilities) may help reduce the number of iterations
required to arrive at a feasible solution. However, this
may also cause the problem to cycle. Therefore, it is
recommended that the use of IIWGHT = -1 be limited to
a given number of iterations or to a time period. This is
done by initializing CR variables IFREQA or ITIME and
setting IIWGHT to zero or to +1 for the remainder of this
phase of OPTIMIZE.

CR variable FEPSILON may be used to perturb zero RHS
elements on degenerate problems. For "less~than" con-
straints, zero RHS elements are replaced with FEPSILON,
For "greater-than" constraints, zero RHS elements are re-

placed with -FEPSILON.

Problems for which the OPTIMIZE iteration log shows a
zero ACTIVITY value for a large number of iterations may
benefit from such perturbation. This is effected by the
following control program statements.

FEPSILON = 1.0D-5
CALL OPTIMIZE
FEPSILON = 0.0
CALL OPTIMIZE

The communication region variables utilized by OPTIMIZE
are listed below. Of all the variables in the list, only
ARHS, AOBJ, and FOBJWT must be initialized by the user
prior to calling OPTIMIZE.

CR Variable Explanation
ARHS Name of the right-hand side.
AOBJ Name of the objective row.

34 Optimization Phase

The weight given to the objective
function. Must be +1. 0 for mini-
zation, -1.0 for maximization.

Factor used in determining effective
DJ when infeasible, as in

DJE=FCMPDJ * DJ + (1.0
-FCMPDJ) * DJI

DJE is the effective DJ of
the column,

DJ is the true DJ of the
column.

DJI is the DJ based on in-
feasibility removal qualities

of column.

Number of profitable candidates from
which one is selected during pricing
of the matrix. For example, if
INCAND is 5, then from each group
of five profitable columns, the most
profitable is selected. [If INCAND is
zero, the system will attempt to choose

Infeasibility weighting switch, ac-
cording to codes shown below.

-1 Weight by amount of
infeasibility.

0 All infeasibilities given
equal weight.

+1 Weight by reciprocal of
amount of infeasibility.

The value used to replace zero right-
hand-side elements of inequalities on
degenerate problems. If the constraint
is of the less=than type, a zero RHS
element is replaced with FEPSILON.
If the constraint is of the greater-than
type, a zero RHS element is replaced

DJ zero tolerance. If the absolute
value of the reduced cost (DJ) is less
than FDJZT, it is considered zero.

Infeasibility zero tolerance. If the
absolute value of the amount of in~
feasibility is less FINFZT, the vari-
able is considered feasible.

CR Variable Explanation
FOBJWT
FCMPDJ

where
INCAND

the optimum set.
[IWGHT

Code Meaning
FEPSILON

with =FEPSILON.
FDJZT
FINFZT
FMPIVT

Minimum pivot tolerance. During any
optimization procedure (here, INVERT
is not considered an optimization pro-
cedure), an element is not considered
as potentially pivotal unless its absol-
ute value is greater than FMPIVT,

CR Variable

Explanation

ILOGC

ILOGP

ILOGSS

IFREQI

IFREQA

ITIME

INVTIME

Iteration logging frequency on con-
sole typewriter,

Iteration logging frequency for stan-
dard printing device.

On/Off switch for printing column
selection messages during pricing of
matrix.

Iteration frequency interrupt for in-
version. The KINV interrupt will
occur every IFREQI iterations

(IFREQI 2 0).

Iteration frequency interrupt. If
IFREQA is 0, no inferrupt will occur.
Otherwise, the KFREQA will occur
every IFREQA iterations.

The length of time, in minutes, before
the KTIME interrupt will occur. The
KTIME interrupt does not occur if
KTIME is set to zero. Whenever the
KTIME interrupt occurs, KTIME is

set to zero. Time for KTIME is mea-
sured from the time of the last initial-
ization of ITIME.

Switch controlling the KINV inter-
rupt timing routine in the OPTIMIZE
procedure. If INVTIME is 0, the
timing routine is active and causes
KINV inferrupt at times such that the
total optimization time tends to be
minimum. If INVTIME is -1, the

timing routine is not active.

The following interrupts may occur within OPTIMIZE.

Interrupt

KMAJER

KIOER

KNFS
KUBS

KINV

Causes

1. AOBJ or ARHS undefined.

2. No matrix to optimize,

1. Unrecoverable 1/O error.

2. INVERSE file capacity
exceeded.

No feasible solution.
Unbounded solution.

1. Inversion frequency (IFREQI)
to be satisfied.

2. Correcting numerical errors.
3. Inverse exceeding file storage.
4. Clock control active. Cor-

rective action requires calling

the INVERT procedure.

Interrupt Causes
KFREQA User iteration frequency (IFREQA)
- satisfied.
KTIME User-specified time increment reached.

Some possible difficulties that may occur during optimiza-
tion, and some suggested cures are given below,

DEGENERACY

If many RHS coefficients are zero, the problem may be de-
generate. Degenerate problems are characterized by an
inability to reduce infeasibilities beyond a certain number
during phase one, or an excessive number of iterations to
arrive at the optimal solution.

The cure is crashing before calling for OPTIMIZE. Use of
the MODIFY parameter in the call for CRASH is recom-
mended. However, since this causes modification of the
matrix data, one may have to save (using the SAVE pro-
cedure) the current matrix before calling for CRASH
(MODIFY), preserve the optimal basis after optimization
(BASISOUT), reload the original matrix by means of
RESTORE, reload the optimal basis (BASISIN), and invert
to the optimal basis (INVERT). This in effect cancels any
changes made by CRASH to the matrix and allows subse-
quent execution of PARARHS or the use of an alternate
RHS vector.

Another cure is to use RHS perturbation (FEPSILON).
PIVOT REJECTIONS

Exception messages printed by the OPTIMIZE and INVERT
procedures indicate pivot rejections. Subsequently, the
problem may become pseudo-infeasible, or pseudo-unbounded,
or may become pseudo-optimal during phase two of
OPTIMIZE. Also, the numerical accuracy may be impaired.

Generally, occasional pivot rejections during the OPTIMIZE
procedure have no adverse effects. Pivot rejections during
INVERT may result in some of the abnormalities listed
above.

The following actions may correct pivot rejections:

1. Raise the value of the FABSZT and/or of the FRELZT
tolerances: this tends to eliminate small terms from
the matrix, thus making it more unlikely for a pivot
to be small enough to be rejected. During computa-
tions, round-off errors may cause certain zero ele-
ments in the transformed mairix to be computed as
very small values. Hence, the FABSZT and FRELZT
tolerances should be set large enough so that resulting
pseudo-values will not be chosen as pivot terms. Care
must be taken not to use too large a value; since this
could eliminate valid elements.

2. Lower the value of FMPIVT and FMINVT: during OPTI-

MIZE and INVERT, pivoting on very small elements may
cause loss of numerical accuracy. To avoid this, elements

Optimization Phase 35

smaller than FMPIVT and FMINVT are rejected as
pivot elements, Values that are too large for these
tolerances may result in ignoring valid pivot terms,
thereby causing unboundness or preventing feasibility,

3. Eliminate poor scaling of the matrix: scaling is ade-
quate when the matrix coefficients are within two or
three orders of magnitude of each other,

INVERT The INVERT procedure establishes the produci-
form inverse for the currently specified basis. To minimize
the number of elements in the inverse and, therefore, re-
duce numerical rounding error and computation time, IN-
VERT uses the most modern techniques in triangularization
and sub-triangularization. INVERT may be called either
explicitly by the user or as the result of the KINV
interrupt.

Periodic calls to INVERT from OPTIMIZE help preserve

numerical accuracy and reduce total optimization time,

Such calls are automatically executed at suitable time

intervals, Setting CR variable INVTIME to a negative
value inhibits these automatic calls,

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt, Exceptional
conditions, such as the INVERSE procedure exceeding
file storage, or loss of accuracy during OPTIMIZE,
PARARHS, or PARAOBJ procedures, may also cause the
KINV interrupt to occur.

In general, operating with INVTIME = 0 and IFREQI =0
gives the best speed and accuracy. CR region variable
*FMINVT is used by INVERT as the minimum pivot toler-
ance, Elements are not considered pivotal if their value
is smaller than FMINVT, FMINVT should be initialized
to a value smaller than the value used for FMPIVT, the
minimum pivot tolerance for OPTIMIZE,

The following interrupts may occur within INVERT,

Interrupt Causes

KMAJER 1. No matrix defined.

2. No basis to invert to.

KIOER Irrecoverable input/output error.

CRASH The CRASH procedure attempts to find an initial
basis structure that reduces infeasibility, reduces degeneracy,
and that contains variables that must be basic at solution,
In addition, any row that has no feasible solution is pointed
out and a KNFS interrupt occurs,

In the following LP equation,
2A. X, &S, = RHS,
|J J I I

the sign of the slack coefficient S; is positive for equa-
tions of the type "less than" or "equai to”, and nega-
tive for equations of the type "greater than", Both A;:
and S; are referred to as elements, RHS; is the right-
hand-side coefficient,

36 Optimization Phase

The following messages may be printed during CRASH.

ROW xxxxxxxx DOMINATING. ROW SET NON-
RESTRAINING (FREE).

This message is produced when row xxxxxxxx has a zero
RHS and either no plus elements or no negative elements.
Since this equation constrains all of the columns having
elements in it to zero, CRASH will also fix all those col-
umns at lower bound. This is equivalent to having speci-
fied the row as N (nonrestraining) in the ROWS chapter
during INPUT.

SLACK ON ROW xxxxxxxx SET FREE.

This message is produced when the slack for row xxxxxxxx
is the only plus element in the row. Therefore, the slack
for this row must be basic. This is equivalent to having
specified the row as N (nonrestraining) in the ROWS chap-
ter during INPUT.

COLUMN yyyyyyyy SET FREE IN ROW xxxxxxxx.

This message is produced if the element in column yyyyyyyy
is the only plus element in equality row xxxxxxxx and the
RHS for this row is positive or zero, or if the element in
column yyyyyyyyis the only minus element if row xxxxxxxx
and the RHS for this row is zero. Column yyyyyyyy is
entered into the basis in row xxxxxxxx. This is equivalent
to having specified the column as FR (free) in the BOUNDS
chapter during INPUT.

COLUMN yyyyyyyy FIXED AT LOWER BOUND.

This message is produced whenever a column has an element
in a dominating row implying that it must be nonbasic. This
is equivaient to having specified the column as FX (fixed at
lower bound) in the BOUNDS chapter during INPUT.

A summary line is printed stating the number of rows set free
(slack on rows must be basic), the number of columns set
free (columns that must be basic), the number of fixed col-
umns (columns that must be nonbasic), and the number of
rows that have no feasible solution.

INVERT is automatically called by CRASH to invert to the
basis described by CRASH.

If it is desired to have the free and fixed status applied to
the MATRIX, the parameter MODIFY on the call for CRASH
will effect this.

Crashing often results in a significant speed increase in the
OPTIMIZE procedure if the problem is degenerate and
MODIFY is specified. The CRASH execution time is gener-
ally negligible compared with the OPTIMIZE time.

If the right-hand-side parametric procedure is to be used
later in the run, or if a successive case is run which is ob-
tained from the current case by use of the REVISE pro-

cedure or by using other right-hand-sides, and the

MODIFY parameter is specified, the following sequence
of operations is necessary.

1. Save the problembefore callingfor CRASH (call SAVE).

2. Save the optional basis after reaching the solution
(CALL BASISOUT, FILE, 'filename’).

Restore the original matrix (call RESTORE).
4. Restore the optimal basis (CALL BASISIN, FILE,

filename').

Note that if parametric programming is to be used later in
the run or other right-hand-sides are to be used, MODIFY
should not be used since the free and fixed status assigned
by CRASH will not be valid for another right-hand=-side or
for PARARHS.

The optional parameter for CRASH is given below.

Parameter Explanation

MODIFY Indicates that the free and fixed

status of variables is to be made

permanent in the MATRIX.

The following communication region variables must be ini-
tialized by the user prior to the call for CRASH.

CR Variable Explanation
ARHS Name of the right-hand-side.
AOBJ Name of the cost row.

The following interrupts may occur within CRASH.

Interrupt Causes

KMAJER 1. AOBJ or ARHS undefined.

2. No matrix to optimize.

KIOER 1.

Irrecoverable input/output
error.

2. File capacity exceeded.

KNFS No feasible solution.

OUTPUT PHASE

The output phase contains five procedures, OUTPUT,
SOLUTION, ERRORS, CONDITION, and GET. An out-
line of each is given in Table 12.

Table 12. Output Procedures

Procedure Purpose

OUTPUT

Displays the matrix in various
forms.

SOLUTION

Reports the solution values.

Table 12. Output Procedures (cont.)

Procedure Purpose
ERRORS Examines errors in the solution.
CONDITION Displays the condition of vari-
ous FMPS regions and files.
GET Retrieves solution information
in the control language.
OUTPUT

The OUTPUT procedure displays the entire ma-
trix or a selected subset on the standard printing device, or
files on the internal communications device. OUTPUT
displays the entire original matrix in tabular form on the
standard printing device. Referring to the LP equation
formulations below,

A. X, S =RHS
ij i i
Ci X. — Maximum

The OUTPUT procedure displays the values of the following
elements:

Coefficients Aij

Coefficient Si (value of 1 for the slack variable)
Right-Hand-Side values RHS

Cost coefficient Ci

The options of OUTPUT (described in Table 13) control the
following display options:

1. Grouping of the coefficients: the coefficients can be
grouped and displayed for each variable (matrix col-
umn), or for each equation (matrix row), or can be
displayed on the printer form in such a way that they
form the entire matrix when the printer pages are sepa-
rated and reassembled together in acertain manner. The
grouping by rows is generally the most compact way of
displaying large LP matrices. The grouping in tableau
format is only practical for small problems (less than
200 variables).

2. Representation of the coefficient values (numerical
value) or symbol for order of magnitude.

3. Applicability of selection lists: output may be made to
include or exclude all coefficients for specified rows
or for rows the names of which match specified row
masks or both, or for specified columns or for columns
the names of which match specified column masks.
If desired, row and column selection lists may be
used in conjunction with each other to abstract
further the printed output. Two special selection
lists, LISTI and LISTU can also be used in this con-
nection. LISTI identifies the set of all infeasible
equations (rows) and LISTU identifies the set of all
unbounded variables (columns) at the time of the

call for OUTPUT.

Optimization Phase 37

4, Whether to display the original or current coefficients: those for the simplex tableau corresponding to the
referring to the simplex tableau, the original coeffi- current basis,
cients are the Coefficients, Right-Hand-Side Coeffi-
cients, Slack Coefficients, and objective Function .
coefficients for the initial tableau (all slack basis). Output Medium: the report prepared by OUTPUT is dir-
Contrasted with this, the "current" coefficients are ected to the standard printing device.

Table 13. Parameters for QUTPUT

Parameter Output Device Function of Parameter
(PRINTER)

CURRENT Optional The requested elements of the matrix are premultiplied by the in-
verse to bring them up to date with the current basis.

CODED Optional Provides a condensed, coded picture of matrix tableau,

BYROWS Optional The nonzero elements of the row along with the names of the col-
umn in which they reside are displayed. (Matrix displayed row
by row.)

BYCOLS Optional The nonzero elements of the column along with the names of the

rows in which they reside are displayed. (Matrix displayed col-
umn by column,)

COUNTS The name, type, and element count of each row, column, and
RHS is printed according to the following codes.

The type for a row is printed:
Row Type Meaning

N Nonrestraining

E Equality

G Greater than

GR Greater than with a range
L Less than

LR Less than with a range

The type for o column or RHS Is printed:
b

Row Type Meaning

FX Fixed
FR Free
LO Lower bounded
UpP Upper bounded
Ly Lower and upper bounded
MATRIX Outputs the matrix in card image form on the card punch or to a

CARD communication file if the FILE, 'filename' parameters are
specified. The contents of CR variable ADATA will be placed in
columns 15 to 22 of the generated NAME card.

ROWS Optional Indicates that row selection or exception lists are to be used.

COLS Optional Indicates that column selection or exception lists are to be used.

EXCEPT Optional Indicates that the following parameter is a list reference and
items in list are to be excepted from output.

LISTR Optional Used in connection with ROWS parameter to specify that LISTR
contains the row selection or exception list,

LISTC Cptional Used in connection with COLS parameter to specify that LISTC

contains the column selection or exception list,

38 Optimization Phase

Table 13. Parameters for OUTPUT (cont.)

Parameter Output Device Function of Parameter
(PRINTER)
LISTI Optional Used in connection with ROWS parameter to specify that the row

selection list is composed of all infeasible rows.

LISTU Optional Used in connection with COLS parameter to specify that the col-
umn selection list is composed of unbounded columns,

FILE Indicates that requested output be written on internal communi-
cation file (as well as printed).

'filename' Used in connection with FILE parameter fo specify 'filename' of
internal communication file.

Notes:

ROWS, LISTR
ROWS, LISTI
ROWS, EXCEPT, LISTR
ROWS, EXCEPT, LISTI

excluded from output.

COLS, LISTC
COLS, LISTU
COLS, EXCEPT, LISTC
COLS, EXCEPT, LISTU

output,

Either BYROWS or BYCOLS must be specified, but not both.
Element values displayed are the original ones as loaded by INPUT unless the parameter CURRENT is specified.
Unless BYROWS or BYCOLS is specified, the matrix is displayed in tableau format,

Parameter ROWS, if specified, must always be part of one of the following parameter sequences:

This parameter specifies that only those elements in the rows specified in LISTR or LISTI are to be output or to be

Parameter COLS, if specified, must always be part of one of the following parameter sequences:

This parameter specifies that elements in the columns specified in LISTC or LISTU are to be output or excluded from

The following control program statements are useful in
determining the cause of infeasibility or unboundedness if it
occurs during CRASH, OPTIMIZE, PARAOBJ, or PARARHS:

C INITIALIZE UNBOUNDEDNESS INTERRUPT
CELL TO TRANSFER TO 500
ASSIGN 500 TO KUBS

C INITIALIZE INFEASIBILITY INTERRUPT CELL
CELL TO TRANSFER TO 510
ASSIGN 510 TO KNFS

C ENTRY FOR UNBOUNDED PROBLEM INTERRUPT
500 CALL OUTPUT (BYCOLS, COLS, LISTU)
503 CALL SOLUTION
STOP
C ENTRY FOR INFEASIBLE PROBLEM INTERRUPT
510 CALL OUTPUT (BYROWS, ROWS, LISTI)
GO TO 505

In case of unboundedness, the matrix columns for the un-
bounded variables are output.

In case of infeasibility, the matrix rows for the infeasible
constraints are output.

The following example illustrates the use of OUTPUT to
display the original form of the elements in the rows speci-
fied in LISTR but not in the columns specified in LISTC.

CALL OUTPUT (BYROWS, ROWS, LISTR, COLS,
EXCEPT, LISTC)

The following interrupts may occur within OUTPUT

Interrupt Causes
KMAJER 1. No matrix has been processed
by INPUT.
2. There is no file with the name
'filename’.
KMINER 1. Noull selection list.

2. Invalid parameters.

3. Illogical combination of
parameters

KIOER Irrecoverable input/output error.

Optimization Phase 39

SOLUTION The OPTIMIZE procedure does not auto-
matically print the solution values when an optimal solu-
tion is reached. Its only purpose is to produce the optimal
basis. Calling for the SOLUTION procedure allows the
user to output the actual solution report.

The same mode of operation applies for parametric program-
ming on the Right-Hand-Side and Costrow. Parametric pro-
cedures PARARHS and PARAOBJ create the basis for various
values of the parameter FTHETAR and FTHETAC but do not
print the solutions, this requires a call to SOLUTION.

Keeping the solution output function separate from the
optimization or parametric procedures allows greater flexi-
bility in the use of these procedures. Also, since the
solution is called from the control program, tests may be
programmed in the control program, using the IF statement
to print the solution only under certain conditions. Addi-
tionally, several solution reports may be created for a
given problem using different selection lists.

SOLUTION may also be used after a call to RESTORE,
thereby printing the solution for a problem previously
saved on a RESTART file, or after the sequence CALL
BASISIN, CALL INVERT to output the solution pertaining
fo a user-specified basis.

The normal mode of SOLUTION is to print the solution
on the standard printing device. If the optional paramefer
FILE is specified, the specified information is also placed
on communication file 'filename'. In this case, the
RCHAPTER and/or CCHAPTER parameters must be used to
specify the columns of output to be filed.

SOLUTION output is prepared in two chapters, ROWS and
COLUMNS. The ROWS chapter contains information on
the selected rows in the matrix. The report contains nine
columns of information. Table 14 describes each of the
nine columns for the ROWS chapter. The COLUMNS
chapter contains information on the selected columns in

the mairix. The columns report contains eight columns
which are described in Table 15.

If the FILE option is used, it is possibie to file the data
columns selectively in each chapter as well as select which
rows and columns fo output. Each data column has been
assigned a number. Tables 14 and 15 list the numbers as
well as the headings in each chapter,

The data columns are selected for filing by using the
keyword parameters RCHAPTER and CCHAPTER, each
followed by the numbers of the data columns to be
filed.

Table 14, ROWS Chapter Column Description

Column Heading Description of Information in Column
1 NUMBER The internal serial number associated with the row,
2 ROW The name of the row (slack).
3 AT A two-character code indicating status of row.
Code Meaning
BS Slack variable in basis and feasible.
** Slack variable in basis and infeasible,
EQ Artificial slack variable, nonbasic,
UL Row at upper limit,
LL Row at lower limit,
4 ACTIVITY Activity of row, that is, the original right-hand-side minus the activity of
the slack.
5 SLACK ACTIVITY Activity of slack variable.
6 LOWER LIMIT Lowest activity that row may have.
7 UPPER LIMIT Highest activity that row may have.
8 DUAL ACTIVITY Otherwise known as simplex multiplier, or PI value for row.
9 SLACK PRICE Slack price if specified during input. If slack is priced, reduced cost of
stack is equal to the DUAL ACTIVITY + or - the SLACK PRICE, where + or
- refers to minimizing or maximizing, respectively,

40 Optimization Phase

Table 15. COLUMNS Chapter Column Description

Column Heading Description of Information in Column
1 NUMBER The internal serial number associated with column,
2 COLUMN The name of the column,
3 AT A two-character code indicating status of column.
Code Meaning
BS Column in basis and feasible,
*E Column in basis and infeasible.
FR Column basic and free.
EQ Column nonbasic and fixed.
UL Column nonbasic at upper limit.
LL Column nonbasic at lower limit,
4 ACTIVITY The value of the column in the solution,
5 INPUT COST The objective function coefficient of column,
6 LOWER LIMIT Lowest activity column may have.
7 UPPER LIMIT Highest activity column may have,
8 REDUCED COST The DJ of the column, The rate of change in the objective value per unit
change of the column, Note that the reduced cost of an upper-bounded
variable at upper bound will be negative. It may also be negative on a
fixed variable.

Chapter 2 describes the means of accessing the filed solu-
tion and the structure of each record.,

The example shown below illustrates some uses of

SOLUTION,

CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE', RCHAPTER, 2, 5, 8, CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the fol-
lowing tasks.

1. File the output on communication file 'SOLFILE' as
well as on the printer.

2. File only the rows specified in row selection list LISTR.

3. File only the columns specified in column selection
list LISTC,

4. File only the row name, slack activity, and dual acti-
vity columns of the ROWS chapter. (All columns appear
on the printer report.)

5. File only the column name, activity, and reduced cost
columns of the COLUMNS chapter. (All columnsappear
on the printer report.)

The optional parameters available to SOLUTION are given
below.
Parameter Explanation

ROWS Indicates that row selection or
exception list follows.

Parameter Explanation

COLS Indicates that column selection or
exception list follows.

EXCEPT Indicates that following list reference
is exception list.

LISTR Used in connection with ROWS to
specify row selection or exception
list.

LISTC Used in connection with COLS to
specify column selection or exception
list,

FILE Indicates that requested output be
written on internal communication
file 'filename'.

'filename’ Used in connection with FILE to specify
'filename’.

RCHAPTER Indicates ROWS chapter data column
selection numbers follow.

CCHAPTER Indicates COLUMNS chapter data

column selection numbers follow.

The following interrupts may occur within SOLUTION,

Interrupt Causes

KMAJER 1. No mafrix defined.

2. There is nofile with name 'filename’.

Optimization Phase 41

Interrupt Causes

3. Data column selection indicated
but specifications missing.

KMINER 1. Invalid parameter,

2. lllogical combination of parameters.

KIOER Irrecoverable input/output error.

ERRORS The ERRORS procedure substitutes the current
primal and dual solutions into the original primal and dual
problems and computes and outputs any rounding error that
exists to the standard printing device. Any error less than
the tolerance FABSZT is considered zero, and no line of
print will occur.

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information,

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists
of the following information.

1. Name of the row.

2. Right-hand-side value of row.

3. Magnitude of error.
The following interrupts may occur in ERRORS,

Interrupt Causes

KMAJER No matrix defined.

KIOER Irrecoverable input/output error,

CONDITION The CONDITION procedure outputs to
the standard printing device the following information:

1. Contents of communication region.

2. Current status of all active files.

GET The GET procedure allows the user to retrieve in-
formation about a row or column, and to alter his strategy

in the control language. All or any part of the following
items may be accessed on a call for GET.

Code Meaning

uB Upper bound

LB Lower bound

cJ Objective function coefficient
BI Activity level

DJ Reduced cost

ZJ PI value

42 Preservation/Restoration Phase

The general form of a call for GET is

CALL GET (NAME, op, FWxx, OP, FWxx, —. —)

where
NAME is the name of a row or column.
op is one of the codes listed above.
FWxx is a user working cell,

In addition to placing requested information in the speci-
fied working cells, GET also prints information on the
standard printing device. The following example illus-
trates the use of GET to obtain the activity in FWO1, the
input cost in FW02, and the upper bound in column
RUNCRUDE in FWO03.

CALL GET ('RUNCRUDE',BI, FW01,CJ,
FW02,UB,FW03)

PRESERVATION/RESTORATION PHASE

The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE, An outline of
each is given in Table 16 below,

Table 16. Preservation/Restoration

Procedures
Procedure Purpose
BASISOUT Preserves the basis structure.
SAVE Preserves the contents of data
areas and files,
BASISIN Restores a basis structure,
RESTORE Restores the contents of data

areas and files.

BASISOUT The BASISOUT procedures punches or files
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 22) the con-
tents of CR cell ADATA, In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct
format to be used as input data to the BASISIN
procedure,

Chapter 5 describes the format of data cards produced
by BASISOUT and required as input by BASISIN,

Optional parameters for BASISOUT are:

Parameter Explanation

FILE Indicates that the output is to be
written on communication file
'filename'. If FILE is not speci-
fied, the output will be produced
on the standard punch device.

The symbolic name of a communica-
tion file,

'filename'

The following interrupts may occur within BASISOUT:

Interrupt Causes

KMAJER 1. No matrix defined.
2. 'filename' undefined.
3. Invalid parameter,

KIOER Irrecoverable input/output error.

SAVE The SAVE procedure saves the contents of the
communication region, the various internal work areas,
and all internal files (MATRIX, INVERSE, etc.) on the
tape file RESTART. Only one problem may be saved on
the RESTART tape. Any number of SAVEs may be made
to the same restart tape, but the last one overlays pre-
vious ones. If several SAVE files are desired, the tape
unit for RESTART may be changed in the control program
by a new ATTACH statement preceding the SAVE. Note
that user working-storage and communication files are not
saved.

The following interrupts may occur within SAVE,

Interrupt Causes
KMAJER 1. RESTART file undefined.

2. RESTART file not on a tape unit,
KIOER Irrecoverable inpu’r/outpuf error,

BASISIN The BASISIN procedure either inputs a new
basis, or modifies the existing basis. Provision is made
to allow both the specification of variables to be entered
into the basis and the removal of variables at upper or
lower bound. In addition, the user may specify which

nonbasic variables are to be placed at upper or lower bound,

If the MODIFY parameter is used, the current basis will be
used to process the input. Chapter 5 describes the format

of the input cards. If the MODIFY parameter is not used,
an all-slack basis will be used to process the input, and all
variables will initially be set at lower bound.

A call for the INVERT procedure must be made following
the BASISIN procedure.

The optional parameters for BASISIN are given below.

Parameter Explanation

MODIFY Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

FILE Indicates that the input is on file
'filename' instead of the normal card

reading device.

'filename' The symbolic name of the input file.

The following interrupts may occur within BASISIN,

Interrupt Causes

KMAJER 1. Invalid parameter.
2. 'filename' undefined,

KIOER Irrecoverable inpuf/oufpuf error.

RESTORE The RESTORE procedure restores the data
areas and internal files saved by SAVE from file
RESTART. Note that any intemal file restored by
RESTORE must be defined prior to the call for RESTORE,

The following interrupts may occur within RESTORE,

Interrupt Causes

KMAJER 1. RESTART file undefined.
2. Internal file undefined.

3. RESTART file not on a tape
unit.

4, Insufficient core available for
restoring data areas.

KIOER Irrecoverable input/output error.

Preservation/Restoration Phase 43

7. SEPARABLE PROGRAMMING OPERATING MODE

Use and operation of procedures in the separable program- The nonlinearities must comply with the following important
ming (SEP) operating mode will be described in this chapter. restrictions:

A general description of this operating mode is provided fol-
lowed by descriptions of specific procedures. The procedures

. . 1. A nonlinear function in n variablesmust be "separable"
are presented in four logical phases.

into the sum of n functions, each in terms of only one

1. Input of these varicbles, as in

2. Optimization

3. Output y =Flx) = ()) + oo +F (x)
4. Preservation and Restoration

2. Each of the n functions must be representable by a
GENERAL DESCRIPTION OF SEP MODE piece-wise linear approximation of that function. The
graph of the function in Figure 7 is shown insolid lines,
Separable programming provides the FMPS user with the a piece-wise linear approximation of the function is
capability of handling certain types of nonlinear functions. shown in broken line.

f(x)

o Xk-1 X Xk+1 Xp-1 %

Figure 7. Piece-Wise Linear Approximation to a Separable Function

44 Separable Programming Operating Mode

SEP ALGORITHM

A full description of the delta-method algorithm, together
with a discussion of methods available to ensure that the
problem complies with the above conditions, is found in
Non-Linear and Dynamic Programming by G. Hadley.t
Some details of this algorithm are outlined below.

1. Each variable x participating in a nonlinear function
f(x) has associated with it a set of special variables.
These special variables depict the piece-wise linear
approximation to f(x); each special variable represents
the distance progressed along some particular section of
the piece-wise linear approximation. That is, dxy is
the kth of r special variables used to approximate f(x).
It may be written as

X

T -1

X = T
kT %=1

k

where x| _1 and x are successive intercepts on the x
coordinate (see Figure 7).

2. Each of the special variables has a lower bound of zero
and an upper bound of 1. Their order specifies a direc-
tion along the x coordinate.

3. A special variable may become basic only if one of the
adjacent variables is basic or the preceding variable is
at upper bound. A bound shift is allowed only if the
preceding variable is at upper bound. No two special
variables in the same set may be basic af a given
iteration.

4. The activity of the variable approximated is given by
a grid equation of the form

k=1
(See "Applicability of the SEP Algorithm" below.)

5. Any subset of the objective function and the problem
constraints may be separable functions. A variable x
may appear linearly in some functions and as a set of
special variables approximating it in other functions.
The user must only observe the requirements for estab-
lishing interrelationship.

PIECE-WISE LINEAR APPROXIMATION

Figure 7 shows a piece-wise linear approximation to some
function f(x). This function is to be included in a set of
equations for optimization. The function may be part of

i‘G. Hadley, Non-Linear and Dynamic Programming.
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1964, Chapter 4.

the objective or of some constraint. Note that the function
is defined only over certain limits of x, that is,

XA < XS X
0 r

Special variablesdxy, dx2, ... dx;are now defined. These
variables collectively form the set of special variables re-
quired to approximate f(x). The special variable dx; de-
fines the interval between the two x intercepts x, and X1;
dxg, the next interval between xq and xg, and so on. The
relationship is given by

x =X, + dx] (x] - xo) + clx2 (xI - x2)

+...0F dxr(xr - xr_])

or, simply,

r
X =x,+ sum Ax . dx
0 k=] k k

where
0 =< dxk < 1
Axk are user-defined intervals along the x axis.

The Ax| may be as small or as large as required, and may
vary as necessary fo obtain the user-required degree of
approximation to any section of f(x).

The value of f(x) at xp is f(x,), at x, it is f(x,), and so on
.0 0 1 1
to f(xr) at X . Defining

AF(x) =) = F(x_;)s

the relationship for f(x) along the first interval of the piece-

wise linear approximation is obtained by equating

f(x) = f(xo) + Af(x]) . dx]

where
OSdX] <1
dx2=dx3=... =dxr=0

This relationship can be extended to any point on the ap-
proximation, as in

r
f(x) = f(xo) + su_m Af(xk) . dxk
k=1
This is a linear relationship in dx). If the dx, are vari-
ables in the linear program, then this function may be
included in the linear program as long as the following
restriction is observed:

for

de = dx] =... dxk-]

dxk+] =... =dxr=

=1

Separable Programming Operating Mode 45

The variable dx is the only variable in the set that may be
basic. All other variables in the set are at upper or lower
bound.

APPLICABILITY OF THE SEP ALGORITHM

There are two points, A and B, on the piece-wise linear
approximation (Figure 7) from which the value of f(x) de-
creases irrespective of the direction along the x coordinate.
Assuming that f(x) is anobjective tobe maximized, it is ap-
parent that starting from [x, f(x)], the point A would be
reached and the optimum would be indicated. However,
A represents only a local optimum. The global optimum is
point B. By starting af x, and proceeding in the opposite
direction, point B is attained. The use of the SETBOUND
procedure can assist in finding the global optimum in such
cases, but there is no guarantee that an optimum attained
using separable programming is the global optimum unless
all functions have the appropriate properties of convexity
and concavity.

The problem of local optima is also raised by separable non-
convex constraints. If the objective for the problem for
which Figure 7 representfs a constraint was z = x, then,
depending on the direction in which x is moving, the algo-
rithm may decide that A or B is the optimum.

EXAMPLES USING SEPARABLE PROGRAMMING

The following two problems illustrate the use of separable
programming to model nonlinearities in the objective func-
tion and in a constraint.

NONLINEAR OBJECT FUNCTION

Volume-related discounts on a certain petrochemical feed-
stock are to be applied to the objective function according
to the following table:

Volume,

Mbbl/Month $/bbl

0 -250 $4.75
50 - 200 $4.25
200 - 500 $3.75

500 - 1000 $3.00

46 Separable Programming Operating Mode

The total cost of feed, which is the amount by which the
objective function should be decremented, varies with vol-
ume according to the following polygonal curve.

(@)
o T
(@]
<t
o 3500.0
o L
(=]
:; o™
z
-g —4-
]
T ©
53T 2000.0
— N
o
o
S 1
- 875.0
237.5
} t } } f } + f } —
100 200 300 400 500 600 700 800 900 1000
M/bbl/Month

The pseudo costs associated with the four special variables
entered into the problem are the difference in total cost
found on this curve divided by the range of volume associ-
ated with the special variable. Those differences are
$237.5, $637.5, $1125.0 and $1500 respectively. The
matrix tableau would appear as follows.

Purchase Feedstock
SPVART | SPVAR2 SPVAR3 | SPVAR4
-237.5 | -637.5 -1125.0 | -1500.0
Feedstock
Material
Balance -50 -150 -300 -500

Note that the scaling of the special variables must be done
manually and will affect all coefficients of the feed vector.

NONLINEAR CONSTRAINT

This example illustrates the use of separate programming to
model a nonconvex specification row. Two products, A
and B, are to be blended to meet a maximum pour-
point specification of 20°F.

The Pour Point versus Mix Curve is illustrated below. To
prepare the curve for modeiing, on arbitrary choice of
ranges is made for the separable segments. In this case,
ranges are 0-20%, 20-60%, 60-100% of Component B.

Pure A Pure B

Pour Point (°F)

% of Component B

It is assumed that we wish to make 10 Mbbls of the blend.
One vector is used to represent 100% A, and three "delta"
vectors are used to represent the addition of Component B,
as shown in the following tableau.

Separable Set
(Unscaled)

100A | 80A | 40A OA | RHS
OB | 20B | 60B 1008

Upper
Bound Row 10 | 10 10 10

Material
Balance on A | +1.0 | -0.2 | -0.4 | -0.4

Material

Balance on B +0.2 | +0.4 | +0.4

Pour Point

Maximum o o
Specification | 40° | -22°| -10° | +18° |=200°

Note: Pour Point Maximum Specification is equal to
specification multiplied by total volume, as
in 20° x 10° ==<200°.

Since the input requires the separable set to be scaled to
have upper bound of 1, multiply each vector by 10. This
results in the final tableau below as entered in the
problem.

Separable Set
(Scaled)

100A | 80A 40A 0A RHS
OB | 20B 60B 100B

Upper
Bound Row 1 1 1 1

Material
Balance on A | +10.0| -2.0 -4,0 | -4.0

Material
Balance on B +2.0 +4.0 | +4.0

Pour Point
Maximum o

Specification | 4007 | -220°| +100° | +180° | <200°

The separable programming operating mode requires differ-
ent internal treatments of the work matrix than the linear
programming operating mode. There, it is necessary to

set the mode of operation at the beginning of a run by
means of the ENTER procedure.

The procedures in the separable programming operating
mode are presented in four logical phases.

1. Input

2. Optimization

3. Output

4. Preservation and Restoration

Each phase will be explained in detail. Note that many
procedures in the separable programming operating mode
are identical to corresponding procedures in the linear pro-
gramming operating mode. Descriptions of these procedures
are repeated in this section for user convenience. A
note at the beginning of each procedure indicates whether
or not the procedure is identical to the corresponding linear
programming procedure.

INPUT PHASE

The input phase consists of two procedures, INPUT, and
REVISE. An outline of each is givenin Table 17 below.

Table 17. SEP Input Procedures

Procedure Purpose

INPUT Accepts the initial statement
of the SEP problem

REVISE Makes revisions to the SEP
problem

Input Phase 47

INPUT Except for the restrictions and conditions de-
scribed in the following paragraphs, the INPUT procedure
for the separable programming operating mode is the same
as the INPUT procedure for the linear programming oper-
ating mode.

The INPUT procedure specifies a separable programming prob-
lem to FMPS. INPUT processes input data (in standard data
card format only) and converts it info a compact internal
representation on internal file MATRIX. The following
internal files (see Table 7) must be defined before the call
to INPUT.

1. MATRIX
2. INVERSE
3. Utk
4. UTIL2

Also, if INPUT's data are on file, the user's communication
file must also be defined.

The data deck setup for the input procedure is shown in
Chapter 5.

The special variables may appear in any row in the problem.
They are identified as such in the COLUMNS chapter, and
this identification is the only difference between separable
and linear programming data. The 'MARKER' parameters
are used to bracket each set of special variables. (The
single quotation marks are included in the keywords.) There
are two types of 'MARKER' cards distinguished by the key-
words 'SEPORG' or 'SEPEND' in columns 40 to 47 of the
'"MARKER" data card. The format of a 'MARKER' data card
is shown below.

Columns Description

1-4 Blank.

5-12 Unique column name.
13-14 Blank.

15-22 *MARKER'

23-39 Blank.

40-47 'SEPORG' or 'SEPEND'
48-72 Blank.

All of the special variables in a set must be contained be-
tween two '"MARKER’ cards. A set may be embedded any-
where within the body of the matrix columns. The begin-
ning of a new set is recognized when a 'SEPORG' type of
'MARKER' card is read. The name of the set is the name
in columns 5 to 12 of the 'SEPORG" card which precedes
the set. The end of a set is recognized when either a
ISEPEND’ or 'SEPORG’ type of 'MARKER' card with a
unique name in columns 5 to 12 is processed. Contiguous

48 Input Phase

sefs do not require a 'SEPEND' type of '"MARKER' card as
a separafor.

Data cards describing the special vectors in a set have the
same format as normal linear variables. The order of ap-

pearance of the variables in a set defines the required se-
quence dx], R dxr.

Each of the separable special variables must have an upper
bound of 1. This bound is automatically assigned to each
of the special variables. The user may, if he so desires,
include these bounds in the BOUNDS chapter. However,
if any other bound besides this preempted bound is assigned,
it will be registered as a minor error.

The following CR variables must be initialized before the
call for INPUT.

CR Variabie Explanation

ADATA Contains the name of the data deck

for data reading procedures such as

INPUT, REVISE, etc. Also used by

data outputting procedures such as

BASISOUT fo name output data deck.
APBNAME The name to be assigned to the SEP
problem.

Optional parameters for INPUT are

Parameter Explanation

FILE Indicates that the input data is to be
found on file 'filename'. If the pa-
rameter is not used, INPUT data is
assumed to be on the standard card
input device.

filename' The symbolic name of the communica-

tion file on which the input data

resides.

The following interrupts may occur with INPUT.
Inferrupt Causes

KMAJER 1. Invalid parameter.

2. Input data not found.

3. Minimum required input not
found (ROWS, COLUMNS, and
RHS).

4. Undefined files.

5. Rows chapter exceeds available
memory .

6. FILE *filename’ undefined.

7. Invalid '"MARKER' card.

Interrupt Causes
KMINER 1. Duplicate columns. The dupli-
cate column is ignored.

2. Duplicate element. The duplicate
element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4. Invalid combinatfion of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. lIllegal bound for a special vari-
able. The illegal bound is
ignored.

KIOER An irrecoverable input/output error
has occurred.
REVISE This procedure is identical to the corresponding

procedure in the linear programming mode.

The REVISE procedure modifies a matrix according to the
input data from the standard card input device or from an
internal communication file. Any element of the mafrix
can be modified, deleted, or inserted. REVISE requires
that the matrix to be revised be currently input and that all
of the standard FMPS internal files be defined. Communi-
cation region variable ADATA contains the name of the
REVISE data deck or identification record name if data are
on file. New sets of special variables must be bracketed
by the required '"MARKER' cards.

It is mandatory (unless a slack starting basis is desired) that
a BASISIN procedure and an INVERT procedure follow

REVISE to resume from an advanced base.

The data card format is the same as for INPUT. Refer to
Chapter 5 for information about data deck setup.

Optional parameters for REVISE are given below.

Parameter Explanation

FILE Indicates that the input data for
REVISE is on the file 'filename'.

'filename' The symbolic name of the communica-

tion file on which the input data
resides.

The following interrupts may occur within REVISE.

Interrupt Causes

KMAJER 1. Invalid parameter.
2. Input data not found.

3. Undefined files.

Interrupt Causes

KMAJER (cont.) 4. ROWS chapter exceeds available

memory .
5. No matrix exists to REVISE.
6. Invalid '"MARKER' card.

KMINER 1. Duplicate columns. The dupli-

cate column is ignored.

2. Duplicate element. The dupli-
cate element is ignored.

3. Invalid indicator in ROWS or
BOUNDS chapter.

4, Invalid combination of indicators
in BOUNDS chapter.

5. Columns out of sort in BOUNDS
chapter.

6. Illegal bound for a special vari-
able. The illegal bound is
ignored.

KIOER An irrecoverable input/output error
has occurred.

SEP OPTIMIZATION PHASE

The optimization phase contains three procedures in the
separable programming operating mode, OPTIMIZE, INVERT,
and SETBOUND. An outline of each is given in Table 18
below.

Table 18. SEP Optimization Procedures

Procedure Purpose

OPTIMIZE Attempts to find optimal, feasible solu-
tion to the existing matrix while ensur-
ing that the special variables comply
with their basic entry rules.

INVERT Restates the product form of the inverse
in terms of the minimum number of
transformations required to state the
basis.

SETBOUND Tries different solution paths by setting
the special variables in specified sefs
to bound.

OPTIMIZE OPTIMIZE is similar to the LP OPTIMIZE,
except that in the SEP operating mode, the CR variable

INCAND is not available for user setting.

The OPTIMIZE procedure attempts to find a feasible opti-
mal solution to the separable programming matrix using the

SEP Optimization Phase 49

SEP algorithm. If the matrix has no solution, or if the solu-
tion is unbounded, OPTIMIZE will cause the KNFS or KUBS

interrupts to occur.

While the model is infeasible, OPTIMIZE uses a composite
pricing (PI) vector. The function of the composite PI vec-
tor is either to maintain or to move toward optimality while
achieving feasibility. Communication region cell FCMPDJ
is the compositing factor which determines the balance be-
tween the drive for optimality and/or feasibility. Asan
example, a value of 0.5 for FCMPDJ implies a balanced
driving force between optimality and feasibility while a
value of 0.0 implies total disregard for optimality. When
a balanced driving force is requested, OPTIMIZE system-
atically reduces FCMPDJ by 0. 125 if the drive for feasibil-
ity is insufficient. FCMPDJ will be reduced if only one
candidate from the selected subset is chosen fo enter the
basis, and the sum of infeasibilities is not decreasing.

Communication region variable IIWGHT is used to weight
individual infeasibilities. The standard setting for IWGHT
is 0, whichimplies all infeasibilities are given equal weight.
If IIWGHT is set to -1, individual infeasibilities are
weighted by the amount by which they are infeasible. If
IIWGHT is set to +1, individual infeasibilities are weighted
by the reciprocal of the amount by which they are infeasible.

The communication region variables utilized by OPTIMIZE
are listed below. Of all the cells in the list, only ARHS,
AOBJ, and FOBJWT must be initialized by the user prior
to calling OPTIMIZE.

CR Variable Explanation

ARHS Name of the right-hand side.
AOBJ Name of the objective row.

FOBJWT The weight given to the objective
function. Must be +1.0 for minimi-

zation, -1.0 for maximization.

FCMPDJ

Factor used in determining effective
DJ when infeasible, as in

DJE = FCMPDJ* DJ + (1.0-FCMPDJ)
* DJI

where

DJE is the effective DJ of
the column.

DJ is the true DJ of the

column,

DJI is the DJ based on infea-
sibility removal qualities of
the column,

IWGHT Infeasibility weighting switch, ac-

cording to codes shown below.

50 SEP Optimization Phase

CR Variable Explanation
[IWGHT (cont.) Code Meaning
-1 Weight by amount of
infeasibility.
0 All infeasibilities given equal
weight.
+1 Weight by reciprocal of

amount of infeasibility.
FDJZT DJ zero tolerance. If the absolute
value of the reduced cost (DJ) is less
than FDJZT, it is considered zero.
FINFZT Infeasibility zero folerance. If the
absolute value of the amount of in-
feasibility is less than FINFZT, the
variable is considered feasible.
FMPIVT Minimum pivot tolerance. During any
opfimization procedure (here, INVERT
is not considered an optimization pro-
cedure), an element is not considered
as potentially pivotal unless its ab-
solute value is greater than FMPIVT,
ILOGP Iteration logging frequency for con-
sole printer.
ILOGSS On/Off switch for printing column
selection messages during pricing of
matrix.
IFREQI Iteration frequency interrupt for in-
version. The KINV interrupt will
occur every IFREQI iterations
(IFREQI > 0).
IFREQA Iteration frequency interrupt. If
IFREQA is 0, no interrupt will occur.
Otherwise, the KFREQA interrupt
will occur every IFREQA iterations.

ITIME The length of time, in minutes, before
the KTIME interrupt will occur. The
KTIME interrupt does not occur if
ITIME is set fo zero. Whenever the
KTIME interrupt occurs, ITIME is set
to zero. Time for KTIME is measured

from the time of the last initializatior
of ITIME.

The following interrupts may occur within OPTIMIZE.

Interrupt Causes

KMA JER 1. AQOBJ or ARHS undefined.

2. No matrix to optimize.

Interrupt Causes

KIOER 1. Irrecoverable input/output error.
2. File capacity exceeded.

KNFS No feasible solution.

KUBS Unbounded solution.

KINV 1. Inversion frequency (IFREQI)

satisfied.

2. Correcting numerical errors.
3. Inverse exceeding file storage.
Corrective action requires calling the
INVERT procedure.

KFREQA User iteration frequency (IFREQA)
satisfied.

KTIME User-specified time increment
reached.

INVERT This procedure is identical to the corresponding

procedure in the linear programming mode.

The INVERT procedure establishes the product-form inverse
for the currently specified basis. To minimize the number
of elements in the inverse and, therefore, reduce numerical
rounding error and computation time, INVERT uses the most
modern techniques in triangularization and subtriangulariza-
tion. INVERT may be either called explicitly by the user
or called as the result of the KINV interrupt.

Periodic calls to INVERT from OPTIMIZE help preserve
numerical accuracy and reduce total optimization time.
Such calls are automatically executed at suitable time in-
tervals., Setting CR variable INVTIME to a negative
value inhibits these automatic calls.

CR variable IFREQI, if set to a positive nonzero value,
controls the maximum number of iterations that can occur
between occurrences of the KINV interrupt. Exceptional
conditions such as the INVERSE procedure exceeding file
storage, or loss of accuracy during OPTIMIZE, PARARHS,
or PARAOBJ procedures may also cause the KINV interrupt
fo occur.

Ingeneral, operating with INVTIME =0 and IFREQI=0 gives
the best speed and accuracy. CR region variable FMINVT
is used by INVERT as the minimum pivot tolerance. Ele-
ments are not considered pivotal if their value is smaller
than FMINVT. FMINVT should be initialized to a value
smaller than the value used for FMPIVT, the minimum pivot
tolerance for OPTIMIZE.

The following inferrupts may occur within INVERT.

Interrupt Causes
KMAJER 1. No matrix defined.
2. No basis to invert to.
KIOER Irrecoverable input/output error.
SETBOUND The SETBOUND procedure may be called

at any stage of problem solution, provided that a matrix
exists on the file MATRIX. Due to the possibility of obtain-
ing a local optimum to a problem (depending on the solution
path taken), it is of inferest to examine the solutions ob-
tained by proceeding along different paths. SETBOUND
provides this capability.

Independent of problem status, SETBOUND will set all the
special variables in the sets specified to upper bound.

The two possible calls to SETBOUND are
CALL SETBOUND
and
CALL SETBOUND (LISTC)

The first of these calls will result in all the special variables
in all the sets being set to upper bound.

The second call will result in all the special variables in
those sefs listed in a previously loaded column selection
list (see LOADLIST) being set to upper bound. The sets re-
quired are specified by including the column name given on
the 'SEPORG' type of 'MARKER' card in the list of names
in the column selection list.

For example, if a set of special variables is preceded in the
INPUT data by a card with the format outlined below,

Columns Description
5-12 FIRSTSET
13-14 Blank.
15-22 ‘MARKER'
23-39 Blank.
40-47 'SEPORG’

and the name FIRSTSET is included in the LOADLIST data,
then the call

CALL SETBOUND (LISTC)

will set all the special variables in the set bracketed by the
above and the next '"MARKER' card to upper bound. All
other special variables will remain at their previous
bound setting.

SEP Optimization Phase 51

Note that if LISTC is specified and no list is set up, then
all special variables will be set to bound.

Optional parameters for SETBOUND are given below,

Parameter Explanation

LISTC Indicates that a previously estab-
lished column selection list should be
searched for the set names of the var-
iables to change bound.

The following interrupts may occur within SETBOUND.

Interrupt Causes

KMAJER No mairix setup.

KMINER No selection list sefup and optionai
parameter specified.

KIOER An irrecoverable input/output error

has occurred.

OUTPUT PHASE

The output phase contains four procedures, OQUTPUT,
SOLUTION, ERRORS, and CONDITION.

An outline of each is given in Table 19 below.

Table 19. SEP Qutput Procedures

Procedure Purpose

OUTPUT Displays the matrix in various
forms.

SOLUTION Reports the solution values.

ERRORS Examines the errors in the solution.

CONDITION | Displays the condition of various

FMPS regions and files.

Note that, except where explicitly noted, the 'MARKER's
are not included in any of the output generated by the fol-
lowing procedures.

OUTPUT This procedure is identical to the correspond-
ing procedure in the linear programming operating mode.

The OUTPUT procedure displays the entire mairix of a
selected subset on the standard printing device, or files on
the internal communications device. OUTPUT displays the
entire original matrix in tabular form on the standard
printing device.

Parameters for OUTPUT make it possible to:

1. Display updated elements.

2. Select specific rows and/or columns.

52 Output Phase

3. Output nonzero elements only.
4. File results.

Table 13 in Chapter 6 contains a complete list of parameters
for OUTPUT.

The filed output consists of two logical records. The first,
the identification record, is labeled OUTPUT and is fol-
lowed by the second record containing the selected data.
Chapter 2 describes the basic means of accessing the filed
records in FORTRAN and lists the detailed structure of each
record.

The following interrupts may occur within OUTPUT.

Interrupt Causes

KMAJER i.

No matrix has been processed by
INPUT.

2. There is no file with the name
'filename’.

KMINER 1. Null selection list.

2. Invalid parameter(s).
3. logical combination of parameters.
KIOER Irrecoverable input/output error.

The following example illustrates the use of OUTPUT to
display the original form of the elements in the rows speci-
fied in LISTR but not in the columns specified in LISTC.

CALL OUTPUT (BYROWS,ROWS,LISTR,COLS,
EXCEPT,LISTC)

SOLUTION SOLUTION output for the separable pro-
gramming operating mode is prepared in three sections: the
IDENTIFIER section, the ROWS section, and the COLUMNS
section. The IDENTIFIER section is for display of problem
status and indicates the operating mode. The ROWS and
the COLUMNS sections are the same as for the linear pro-
gramming operating mode with one addition in the COL-
UMNS section. The column names of the 'MARKER' cards
will be included in the column name list in the position
they had in the INPUT data column order. These names
mark off each set of special variables, and have no entries
against them. If the user requires the activity of the vari-
able x approximated by the dxj..., dx, he must include
the grid equation (see "SEP Algorithm', above) in the
problem.

The SOLUTION procedure prepares the current solution of

the separable programming matrix for display. The normal

mode of SOLUTION is to print the solution on the standard
printing device. If the optionai parameter FILE is used,

the specified information is placed on internal communica-
tion file 'filename'.

SOLUTION output is prepared in three chapters for the
separable programming operating mode. The first, the
IDENTIFIER chapter, is for display of problem status. The
second, the ROWS chapter, contains information on the
selected rows in the matrix. The report contains nine col-
umns of information. The COLUMNS chapter contains
information on the selected columns in the matrix. The
COLUMNS report contains eight columns,

If the FILE option is used, it is possible to file the data
columns selectively in each chapter, as well as to select
which rows and columns to output. Each data column has
been assigned a number.

Table 14 in Chapter 6 describes the nine columns of the row
report. Table 15 in the same chapter describes the 8 col-
umns of the columns report. These tables also indicate the
number and the heading assigned to each data column.,

The data columns are selected for filing by using the key-
word parameters RCHAPTER and CCHAPTER, each followed
by the numbers of the data columns to be filed.

Chapter 2 describes the means of accessing the filed solu-
tion and the structure of each record.

The example shown below illustrates some uses of SOLUTION.

1 CALL SOLUTION (ROWS, LISTR, COLS, LISTC,
FILE, 'SOLFILE', RCHAPTER,2,5,8, CCHAPTER,
2,4,8)

In the example, SOLUTION is used to perform the follow-
ing tasks:

1. File the output on communication file 'SOLFILE' as
well as on the printer.

2. File only the rows specified in row selection list LISTR.

3. File only the columns specified in column selection
list LISTC.

4. File only the row name, slack activity, and dual
activity columns of the ROWS chapter. All columns
appear on the printed report,

5. File only the column name, activity, and reduced
cost columns of the columns chapter. All columns
appear on the printed report.

The optional parameters available to SOLUTION are given
below.

Parameter Explanation

ROWS Indicates that row selection or excep-
tion list follows.

COLS Indicates that column selection or
exception list follows.

EXCEPT Indicates that following list reference

is exception list.

Parameter Explanation

LISTR Used in connection with ROWS to specify
row selection or exception list.

LISTC Used in connection with COLS to specify
column selection or exception list.

FILE Indicates that requested output be written
on internal communication file 'filename’.

'filename’ Used in connection with FILE to specify
'filename'.

RCHAPTER Indicates ROWS chapter data column

selection numbers follow.

CCHAPTER Indicates COLUMNS chapter data column
selection numbers follow.

The following interrupts may occur within SOLUTION,

Interrupt Causes

KMAJER 1.

No matrix defined.
2. There is no file with name 'filename’.

3. Data column selection indicated but
specifications missing.

KMINER 1.

Invalid parameter.
2. lllogical combination of parameters.

KIOER Irrecoverable input/output error.

ERRORS This procedure is identical to the corresponding
procedure in the linear programming operating mode.

The ERRORS procedure substitutes the current primal and
dual solutions into the original primal and dual problems
and computes and outputs any rounding error that exists to
the standard printing device. Any error less than the toler-
ance FABSZT is considered zero, and no line of print will
occur,

The output is prepared in two sections. The first section
contains the dual errors and consists of the following
information.

1. Name of the basis variable.

2. Magnitude of error.

The second section contains the primal errors and consists of
the following information.

1. Name of the row.
2. Right-hand-side value of row.

3. Magnitude of error.

Output Phase 53

The following interrupts may occur in ERRORS.

Interrupt Causes

KMAJER No mairix defined.

KIOER Irrecoverable input/output error.
CONDITION This procedure is identical to the corre-

sponding procedure in the linear programming operating
mode.

The CONDITION procedure outputs to the standard printing
device the following information.

1. Contents of communication region.

2. Current status of all active fiies.

3. Current status of all assigned input/output devices.
4. Amount of storage (words) in use by edch file.

5. Maximum amount of sforage used in the run by each
file.

SEP PRESERVATION/RESTORATION PHASE

The preservation/restoration phase contains four procedures,
BASISOUT, SAVE, BASISIN, and RESTORE. An outline of
each is given in Table 20 below.

Table 20. SEP Preservation/Restoration Procedures

Procedure Purpose

BASISOUT Preserves the basis structure.

SAVE Preserves the contents of data
areas and files.

BASISIN Restores a basis structure.

RESTORE Restores the contents of data areas
and files.

These procedures are identical to the corresponding pro-
cedures in the linear programming operating mode.

BASISOUT The BASISOUT procedure punches or files
(FILE parameter) the current basis structure and bounds
status. The punched or filed data deck is preceded by a
NAME card which contains (in columns 15 to 20) the con-
tents of CR cell ADATA. In addition, the data deck is
followed by an ENDATA card.

The data deck produced by BASISOUT is in the correct for-
mat to be used as input data to the BASISIN procedure.

54 SEP Preservation/Restoration Phase

Chapter 5 describes the format of data cards produced by
BASISOUT and required as input by BASISIN,

The optional parameters for BASISOUT are

Parameter ~ Explanation

FILE Indicates that the output is to be written
on communication file 'filename'. If
FILE is not specified, the output will be
produced on the standard punch device.

'filename' The symbolic name of a communication

file.

The following interrupts may occur within BASISOUT.

Interrupt Causes
KMAJER 1. No matrix defined.
2. 'filename' undefined.
3. Invalid parameter.
KIOER Irrecoverable input/output error.

SAVE The SAVE procedure saves the contents of the
communication region, the various internal work areas, and
all internal files (MATRIX, INVERSE, etc.) on the tape
file RESTART. Note that user working-storage, and com-
munication files are not saved.

The following interrupts may occur within SAVE,

Interrupt Causes
KMAJER 1. RESTART file undefined.
2. RESTART file not on a tape unit.
KIOER Irrecoverable input/output error.
BASISIN The BASISIN procedure either inputs a new

basis or modifies the existing basis. Provision is made to
allow both the specification of variables to be entered into
the basis and the removal of variables at upper or lower
bound. In addition, the user may specify which nonbasic
variables are to be placed at upper or lower bound.

If the MODIFY parameter is used, the current basis will be
used to process the input. Chapter 5 contains the format of
the input cards. If the MODIFY parameter is not used, an
all-slack basis will be used to process the input and all var-
iables will initialiy be set at iower bound. A call for the
INVERT procedure must be made following the BASISIN
procedure.

The optional parameters for BASISIN are given below.

Parameter Explanation

MODIFY Indicates that the input data is to be
processed against the current basis
structure (instead of the slack basis).

FILE Indicates that the input is on file
'filename' instead of the normal card
reading device.

'filename' The symbolic name of the input file.

The following interrupts may occur within BASISIN,

Interrupt Causes

KMAJER 1. Invalid parameter.

2. ‘filename' undefined.

KIOER Irrecoverable input/output error.

Note that basis specifications which conflict with the rules
for basic and upper bounded variable (see "SEP Algorithm",
above) selection will be resolved by ignoring invalid

specifications.

RESTORE The RESTORE procedure restores the data areas
and internal files saved by SAVE from file RESTART. Note
that any internal file restored by RESTORE must be defined
prior to the call for RESTORE.

The following interrupts may occur within RESTORE.

Interrupt Causes
KMAJER 1. RESTART file undefined.
2, Internal file undefined.
3. RESTART file not on a tape unit.
4. Insufficient core available for
restoring data areas.
KIOER Irrecoverable input/output error.

SEP Preservation/Restoration Phase 55

8. OPERATING PROCEDURES

This chapter includes a description of the BPM control
cards necessary for FMPS runs, and the relationship
between BPM !ASSIGN control cards and FMPS con-
trol language CALL DEVICE statements. Also included
are guidelines for the efficient use of FMPS. The
user should reference the SIGMA 5/7 Batch Processing
Monitor Reference Manual for complete discussion of BPM
control cards. Error messages and error types are given
in Appendix B,

BPM CONTROL COMMANDS USED IN FMPS RUNS

Figure 8 illustrates the general deck sequence for an FMPS
run. The run deck always starts with a set of BPM control
cards. Following the !DATA control card are the user's
FMPS control language program terminated by an END
statement and input data decks. Each input data deck is
preceded by a NAME card and followed by an ENDATA
card, -

ASSIGN AND CALL DEVICE INTERACTION

The interrelationships between !'ASSIGN control card
parameters and the arguments in the CALL DEVICE con-
trol language statement are shown in the following
examples,

In the command
CALL DEVICE("EXAMPLE', TAPE,'E")

the keyword TAPE dictates an ASSIGN control card which
establishes a RAD file, labeled or unlcbeled tape, andspeci-
fies that file or tape organization be consecutive-sequential
(see Table 21).

In the command
CALL DEVICE ('"EXAMPLE2', DISC, 'C")

the keyword DISC dictates an !ASSIGN control card
which establishes a RAD file, and specifies that file or=
ganization be keyed direct-access (see Table 22).

The user should note that the compiled FMPS control lan-
guage statements are written to a file or tape using the

F:1 DCB, A BPM !ASSIGN control card must be in each
run deck for F:1, and the organization must be consecutive-
sequential, The control language compiler within FMPS
simulates the following pair of control language statements,

CALL DEVICE ('PREPDEVI', TAPE, 'A')
CALL ATTACH ('PREPOUT', 'PREPDEVT')

The (INOUT) clause should be included in !ASSIGN con-

trol cards for all FMPS internal files and user communica-
tion files to assure the ability to read and write the file.

56 Operating Procedures

Should the user wish to save the RESTART tape after using
the CALL SAVE procedure in an FMPS run, the (SAVE)
clause should be included on the !ASSIGN control card
associated with the tape.

Note that all FMPS internal files and user FORTRAN com-

munication files are binary files; the |ASSIGN control
card should have the (BIN) clause included.

Table 21, Consecutive-Sequential File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLE', TAPE, 'E')

Acceptable BPM TASSIGN Control Cards

RAD File IASSIGN F:5, (FILE, EXAMP),
(CONSEC), (SEQUEN). ..
Labeled Tape YASSIGN F:5, (LABEL, EXAMP),

(CONSEC), (SEQUEN). . .

Unlabeled Tape | !ASSIGN F:5, (DEVICE, 9T),
(CONSEC), (SEQUEN). . .

Table 22. Direct-Access File Assignments

FMPS Control Language Statement

CALL DEVICE('EXAMPLE2', DISC, 'C')

Acceptable BPM 1ASSIGN Control Card

RAD File IASSIGN F:3, (FILE, EXAM2),
(KEYED), (DIRECT). . .

EFFICIENT USE OF FMPS
ORGANIZING THE CONTROL PROGRAM

For simplicity and in order to avoid sequence errors, it is
recommended that the control program always start with
the following statement order:

CALL ENTER

ASSIGN statements for KMAJER and KMINER
CALL DEVICE

CALL ATTACH

If standard tolerance settings are to be used, the user need
only be concerned with the following initializations:

CR Variable Explanation
ADATA Initialize prior to the call for

any procedure requiring input
data, or producing output on

Input Data Deck(s)

User Control Program

5. [1DATA
4.[1RUN (LMN, FMPS)
|1B1N), (KEYED), (DIRECT), (OUTIN)
3.] IASSIGNF:5,(FILE, Utility File 2), ; jj .
1(BIN), (KEYED), (DIRECT), (OUTIN) N

3. | 1ASSIGNF:4, (FILE, UtilityFile 1), ;
| 1BIN), (KEYED), (DIRECT), (OUTIN
3.| 1ASSIGNF:3, (FILE, Matrix File), ;
— 1(BIN), (KEYED), (DIRECT), (OUTIN)
3.| IASSIGNF:2, (FILE, Inverse File),;

[1©ouTIN
[1(BIN), (CONSEC), (SEQUEN), ;
3. | LASSIGNF:1, (FILE, Cirl Lang File),; N\
3.| IASSIGN F:106, (DEVICE,PO) \\
[1(TSTORE, ggg)

2. | ILIMIT (TIME, mm), (UO, pppp),; N\

1. | 1JOB account number, name

Figure 8. General FMPS Deck Structure

Card types and their uses are explained below.

Card Type

1.
2.

Parameter Purpose
1JOB Identifies the account number and the user for the job.
ILIMIT Sets the maximum execution time, number of printer pages and number of temporary

RAD granules to be in effect for the run. This card is required only when the user

expects the job fo exceed the default BPM limits defined during BPM system
generation.

IASSIGN Mandatory for the five standard FMPS files and also for any additional files or tapes
the job will require (for example RESTART). If the CALL BASISOUT procedure is to
be used, the assign card for F:106 must be included. Note that all the standard
FMPS files may be assigned to either RAD or tape; however, for improved execution
speed they should be assigned to RAD as keyed direct-access files, The control lan-

guage file (F:1) should always be a RAD file and must have consecutive-sequential
organization,

IRUN Causes BPM to load FMPS into core and commence execution.

IDATA Signals BPM that following cards are user datadecks to be read by FMPS.

Efficient Use of FMPS 57

CR Variable Explanation

ADATA (cont.) tape or cards, except for SAVE,
RESTART, and INPUT when SHARE

is specified.

AOBJ, ARHS Initialize these two cells early in
the control program since they are
used by many procedures,

FOBJWT Initialize at -1.0 for maximization,

or 1.0 for minimization,

It is always necessary to initialize the KINV interrupt cell
and to program a sequence of action for that interrupt be-

cause the KINV interrupt may occur for reasons beyond the
user's control (such as the occurrence of excessive numeri-
cal errors). Also, the KINV interrupt may be activated by

the timing routine built into the OPTIMIZE procedure, when-

ever more frequent calls for INVERT would help reduce the
time per iteration within the OPTIMIZE procedure.

The SAVE procedure can be used for two purposes:

1. To preserve the problem status on tape in order to be
able to restart from an advanced basis if it is neces-
sary to discontinue the run, or if hardware errors occur.

2. To create a working copy of a problem in a compact
format on magnetic tape; for instance, calling the
SAVE procedure after reading a large matrix from cards
allows use of the RESTART tape rather than the cards at
a later time.

Execution of the SAVE procedure several times during one
run causes the latest status to be preserved on tape.

58 Efficient Use of FMPS

Whenever a call for SAVE is executed, any information
written on tape by previous calls for SAVE is overlaid by
the new information being written. When restarting a run
by means of the RESTART procedure, care must be used in
the sequence of control program statements. Any state-
ments that modify the communication region (CR) must
appear after the call for RESTART, since execution of the
RESTART procedure initializes the CR to the status at the
time the problem was saved. For this reason, it is recom-
mended that the CALL RESTART statement be placed im-
mediately after the calls for DEVICE and for ATTACH.

MULTIPLE ATTACHMENTS OF RESTART TAPE

It is sometimes desired to use different tapes for RESTART
and SAVE, In this case, it is permissible to ATTACH the
RESTART file several times as in. the following sequence.

CALL DEVICE('MATRIXIN', TAPE,'F')
CALL DEVICE('MATRXOUT', TAPE, 'G')
CALL ATTACH(RESTART, 'MATRIXIN')
CALL RESTART

CALL ATTACH(RESTART, 'MATRXOUT')

CALL SAVE

In the above sequence, the problem is restarted using RE-
START tape F; following the call for RESTART, tape G is
attached to the RESTART file, so that any information
saved during subsequent calculations is written on that
tape, rather than on tape F.

APPENDIX A. PARAMETRIC PROGRAMMING

This appendix describes three posf-optimal procedures,
RANGE, PARAOBJ, and PARARHS, that are available
as options to FMPS. An outline of each is given in
Table 23 below. Note that post-optimal procedures
are available only in the linear programming operating
mode,

Table 23, Parametric Programming Procedures

Procedure Purpose

RANGE Generates and outputs an
analysis of the current LP
solution,

PARAOBJ Performs parametric pro=-

gramming on the objective
row after optimality.
PARARHS Performs parametric pro=
gramming on the RHS after
primal and dual optimality.

After an optimal solution has been obtained, the proce-
dures RANGE, PARAOBJ, and PARARHS may be used to
determine the sensitivity of the optimal solution in regard
to RHS and objective function values. The RHS range
computes how far the activity level of a given nonbasic
variable can be changed in either direction, while hold-
ing all other nonbasic variables at the current activity
level, before the optimal basis for the current RHS will
change. The COST range computes how far the cost coef-
ficient of a given basic variable can be changed in either
direction, while holding the cost coefficients of all other
variables constant, before the optimal basis for the cur-
rent cost coefficients will change. Parametric program-
ming is an extension of RANGES, and is used to determine
how the optimal basis will change when more than one co-
efficient moves over a special range of values. Before
performing parametric procedures, a change row or column
must have been defined. Depending upon which paramet-
ric procedure is requested, a matrix cost row or RHS is
changed continuously until the specified maximum change
has been obtained. The cost row or RHS is called a com-
posite because it consists of the original elements plus a
given amount of a change element. The function of para-
metric procedures is to retain optimality and feasibility as
the problem continues to change.

RANGE The RANGE procedure generates and outputs
an analysis of the current LP solution,

RANGE will produce two different types of reports de~
pending upon the optional parameters. The first param-
eter, BASIC, generates a report of 11 columns for the
variables currently basic or at intermediate levels. The

second parameter, NONBASIC, creates another report of
12 columns for the variables currently nonbasic or at limit
levels, Tables 24 and 25 list column numbers as well as

headings in each level. If neither BASIC nor NONBASIC

is specified, both outputs will be given.

The optional parameters available to RANGE are given
below.
Parameter Explanation
BASIC Indicates that output is to in-
clude only those columns cur~
rently in the basis,
NONBASIC Indicates that output is to in-
clude only those constraint
rows whose slack variablesare
currently nonbasic and those
columns currently nonbasic.

ROWS Indicates that row selection
or exception list parameter
follows.

COLS Indicates that column selection
or exception list parameter
follows

EXCEPT Indicates that following list
reference is for exception list,

LISTR Used in connection with ROWS
to specify row selection or ex-
ception list,

LISTC Used in connection with COLS
to specify column selection or
exception list.

The following interrupts may occur within RANGE,

Interrupt Causes
KMAJER No matrix defined.
KMINER 1. Invalid parameter,
2. Illogical combination of
parameters.
KINV 1. Solution is primal or dual

feasible. Typical response
to this interrupt would be:

CALL INVERT
CALL OPTIMIZE
RETURN

KIOER Irrecoverable input/output error.

Appendix A 59

Table 24, Output for Basic Variables

Column Heading Description of Information in Column
1 NUMBER The internal number associated with the BASIC variable,
2 NAME Name of the basic variable.
3 AT A two-character code indicating the status of the BASIC variable.
Code Meaning
BS Basic variable
** Separator used to distinguish slack from nonslack
4 ACTIVITY Activity of the basic variable,
INPUT COST Input cost specified by the user.
6 LOWER PROCESS The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was decreased by more than the amount
in column 7,
7 LOWER The maximum amount of cost coefficient decrease for the basic variable in column 2
INCREMENT which would not change the status of any variable. If the cost coefficient is
changed beyond this amount, the variable in column 6 would change its status,
8 LOWER AT The current status (at upper limit [UL] or at lower limit [LL)) associated with the
process specified in column 6,
9 UPPER PROCESS The name of the variable that would change its status (enter the basis) if the cost
coefficient of the basic variable in column 2 was increased by more than the amount
in column 10,
10 UPPER The maximum amount of the cost coefficient increase for the basic variable which
INCREMENT would not change the status of any variable. If the cost coefficient was changed
beyond this amount, the status of the variable in 9 would be changed.
11 UPPER AT The current status {at upper limit [uL] or at tower limit [LL]) associated with the vari-
able in column 9,
Table 25. Output for Nonbasic Variables
Column Heading Description of Information in Column
1 NUMBER The internal number associated with the NONBASIC variable.
NAME Name of the nonbasic variable,
3 AT A two-character code indicating the status of the NONBASIC variable.
Code Meaning
EQ Artificial variable,
UL Row at upper limit for slack variable, or column at upper
limit for nonslack variable.
LL Row at lower limit for slack variable, or column at lower
limit for nonslack variable.
** Separator to distinguish slack variables from nonslack
variables.
4 LOWER LIMIT The lower bound on row activity for slack variables, The lower bound on column
activity for nonslack variables.
5 UPPER LIMIT The upper bound on row activity for slack variables. The upper bound on column
activity for nonslack variables.
6 REDUCED The DJ of the variable in column 2,
COST

60 Appendix A

Table 25, Output for Nonbasic Variables (cont,)

Column Heading Description of Information in Column
7 LOWER The name of the basic variable that would leave the basis if the original activity
PROCESS level of the variable in column 2 was decreased beyond the amount in column 8,
8 LOWER The maximum amount of original activity decrease of the variable in column 2
INCREMENT which would not change the status of any variable. If the activity level decreased
beyond this amount, the basic variable in column 7 would leave the basis. (The
lower limit of the variable is ignored.)
9 LOWER AT A two-character code indicating the status at which the BASIC variable in column
7 would leave the basis.
Code Meaning
uL Variable leaves basis at upper limit.
LL Variable leaves basis at lower limit,
10 UPPER The name of the basic variable that would leave the basis if the original activity
PROCESS level of the variable in column 2 decreased beyond the amount in column 11,
N UPPER The maximum amount of original activity increase of the variable in column 2
INCREMENT which would not change the status of any variable. If the activity level was in-
creased beyond this amount, the basic variable in column 10 would leave the
basis. (The upper limit of the variable is ignored.)
12 UPPER AT A two-character code indicating the status at which the BASIC variable in col-
umn 10 would leave the basis.
Code Meaning
UL Variable leaves basis at upper limit.
LL Variable leaves basis at lower limit.
PARAOBJ The PARAOBJ procedure is used to perform Parameter Explanation
parametric programming on the objective row after an LP ETHETACM Maximum value of THETA for
problem has reached optimally. From any LP program a PARAOB.
series of related problems can be defined by replacing the :
objective row with the original row plus a multiple of a FTHETACP The incremental value for THETA

change objective row. This multiple, FTHETAC, is the
parameter commonly known as THETA. In PARAOBJ, each
value of FTHETAC defines a different problem with differ-
ent cost coefficients. The function of this procedure is to
trace the whole series of solutions, varying FTHETAC from
zero up to a maximum parameter of FTHETACM defined by
the user, FTHETAC is gradually increased while the solu- 1.
tion is kept primal and dual feasible by changing the basis
when necessary. Solution printout may be obtained option-
ally at a basis change or at a chosen interval of FTHETAC,

during PARAOBJ for which the
KSOLTN interrupt will occur.

PARAOBIJ will terminate at one of the following three
conditions,

The parameter is at its maximum value of FTHETACM,
The message

'MAXIMUM OF PARAMETER OF THETA AT
< XXXXXX!

PARAOBJ produces an iteration lob at each basis change
which is identical to that of OPTIMIZE with the exception
of the THETA column which represents the current value of
the parameter,

is printed and FTHETAC is set to FTHETACM,

The following parameters must be defined, in addition to 2.
those parameters requested by OPTIMIZE procedure, be-
fore PARAOBJ procedure is called.

The problem becomes unbounded at the current value
of the parameter and no further basis change will
occur. The message

Parameter Explanation
. — 'PREMATURE MAXIMUM OF THETA AT
APOBJ C.onfcuns name of objective func- XXXXXX!
tionrow.
FTHETAC Initial value of THETA for PARAOBJ. is printed and FTHETAC retains the current value.

Appendix A 61

3. The parameter has reached a value beyond which it

can be increased indefinitely without any basis change

to maintain optimality. The message

'NO MAXIMUM FOR PARAMETER OF THETA AT
XXX XXX!

is printed and FTHETAC is set to FTHETACM,

The following interrupts may occur within PARAOBJ.

Interrupt Causes
KMAJER _ 1. AOBJ, ARHS or APOBJ
undefined.

2. No matrix to parameterize.

KINV 1. Problem is initially primal
or dual infeasible.

2. Problem has lost primal or
dual feasibility due to num-
erical error,

3. Inversion frequency satisfied.

4, Inverse exceeding file stor-
age. Normal interrupt re-
sponse for KINV would be:

CALL INVERT
CALL OPTIMIZE

RETURN
KSOLTN Solution printing is requested. A
typical response to this interrupt
would be:
CALL SOLUTION
RETURN
KIOER 1. Irrecoverable input/output
error,

2. File capacity exceeded.

KFREQA User iteration frequency (IFREQA)
satisfied.

KTIME User-specified time increment
reached.

PARARHS The PARARHS procedure is used to perform
parametric programming on the RHS after a problem has
reached primal and dual opfimality. From any LP problem
a series of related problems can be defined by replacing
the RHS with the original RHS plus a multiple of a change
RHS. Thismultiple, FTHETAR, isthe parameter commonly
known as THETA. In PARARHS each value of FTHETAR
defines a different LP problem with a different RHS, The
function of this procedure is to trace the whole series of
solutions by varying FTHETAR from zero up to a maximum
parameter of FTHETAM defined by the user. FTHETAR is
gradually increased while the solution is kept primal and
dual feasible by changing the basis when necessary. Solu-
tion printouts may be obtained optionally at basis changes
or at a chosen interval of FTHETAR,

62 Appendix A

PARARHS produces on iteration log at each basis change
which is identical to that of OPTIMIZE with the exception

of the THETA column representing the current value of
FTHETAR,

The following parameters must be defined before PARARHS
is called.

Parameter Explanation

APRHS Name of the parametric RHS.

FTHETAR Initial value of THETA for
PARARHS.,

FTHETARM Maximum value of THETA for
PARARHS,

FTHETARP The incremental value for THETA

during PARARHS for which the
KSOLTN interrupt will occur.

PARARHS will terminate for one of the following three
conditions.

1. The parameter is at its maximum value of FTHETARM,
The message

'"MAXIMUM OF PARAMETER OF THETA AT
. XXXXXX!

is printed and FTHETAR is set to FTHETARM,

2. The problem becomes infeasible at the current value
of parameter and no further basis change can occur.
The message.

'PREMATURE MAXIMUM OF THETA AT | XXXXXX'

is printed and FTHETAR retains the current value.

3. The parameter has reached a value beyond which it
can be increased indefinitely without any basis
change to maintain feasibility. The message

'NO MAXIMUM FOR PARAMETER OF THETA AT
< XXXXXX!

is printed and FTHETAR is set to FTHETARM,
The following interrupts may occur within PARARHS,

Interrupt Causes
KMAJER 1. AOBJ, ARHS or APRHS
undefined,

2. No matrix to parameterize,

KINV 1. Problem initially primal or
dual infeasible.

2. Problem has lost primal or
dual feasibility due to num-
erical error,

Interrupt Causes

3. Inversion frequency satisfied.

Normal interrupt response for

KINV would be:

CALL INVERT
CALL OPTIMIZE

RETURN

KSOLTN Solution printing is requested.
A typical response to this in-
terrupt would be:

CALL SOLUTION

RETURN

Interrupt

KIOER

KFREQA

KTIME

Causes

1. Irrecoverable input/output
error,

2. File capacity exceeded.

User iteration frequency (IFREQA)
satisfied.

User-specified time increment
reached.

Appendix A 63

APPENDIX B. FMPS ERROR MESSAGES

CONTROL LANGUAGE COMPILER DIAGNOSTICS

The following list specifies the error messages that can be
produced by the control language compiler at compile
time. Any error during compilation precludes execution
of the control program, Note that all error lines are pre-
fixed with '

ERROR*****.

Computer diagnostics are listed below. Note that in the
INVALID PARAMETER message, aaaaaaaa contains the name,
in from one to eight characters, of the incorrect parameter.
ILLEGAL STATEMENT
STATEMENT NUMBER MUST BE NUMERIC
ASSIGN STATEMENT MUST REFER TO INTERRUPT CELL
REQUIRED FIELD MISSING

THE STATEMENT NUMBER OF A GO TO STATEMENT
MUST BE NUMERIC OR KTYPE

ARGUMENT ON LEFT OF EQUAL SIGN MUST BE
EITHER USER OR COMMON STORAGE VARIABLE

EQUAL SIGN MISSING
INVALID PARAMETER aaaaaaaa
MISSING LEFT PARENTHESIS

LOGICAL OPERATOR MUST BE ENCLOSED IN
PERIODS

ILLEGAL LOGICAL OPERATOR
MISSING RIGHT PARENTHESIS
INVALID PROCEDURE NAME
UNDEFINED STATEMENT NUMBER
DUPLICATE STATEMENT NUMBER

NOT ENOUGH CORE AVAILABLETO PROCESS THIS
MANY STATEMENTS

MISSING TERMINAL QUOTE

64 Appendix B

INPUT/OUTPUT ERROR TYPES

The following table describes the input/output error mes-
sages that can occur during an FMPS run.

Table 26. Input/Output Error Types

Error Type

Description

1.

A file is referenced but no
ATTACH was made.

No DEVICE is attached to
a file.
Device read error,

Device write error,

Volume of storage for de-
vice exceeded during a
write operation,

Attempt to write on a file
in read or closed status,

Attempt to read on file in
write or closed status,

Attempt to read beyond
written information,

Dynamic core pointer for
a file buffer points to an
illegal core area.

Undefined type of device,
i.e., device not DISC or
TAPE.

Insufficient core available
to create even one file

buffer,

APPENDIX C. FMPS SAMPLE RUNS

JBB 326, S0MD

LIMIT (TIME,90)4(L6,1000),(Uts1000),(D3,1000)

ASSIGN Fi106s (DEVICE,CPAOS)

ASSIGN Fil,(FILESCLANG) 2 (BIN) s (WRITEsALL) s (CONSEC) s (SEQUEN)S;
(OUTIN)» (RECL#230000), (READsALL)

ASSIGN F12, (FILE,UTIL1)2(BIN) s (WRITE2ALL) 2 (KEYED) #(CIRECT),y
(OUTIN), (RECL230000), (READ2ALL)

ASSIGN Fi3s (FILE2UTIL2)2 (BIN)2 (WRITESALL)) (KEYED) s (DIRECT).y
{OUTIN}, (RECL230000), (READsALL)

ASSIGN Fias (FILESMTRX)2(BINYS (WRITESALLY 4 {DIRECT) s (KEYED)s;
(BUTIN), (RECL230000) s (READsALL)

ASSIGN F15,(FILE,IVSE) 2 (BINY,) CWRITESALL) 2 (DIRECT) s (KEYED) s ;
(BUTIN), (RECL230000), (READ2ALL)

ASSIGN F16, (DEVICES9T)a (INBUT), (INSN2U26)2 (BIN)2 (WRTITESALL) S (SAVE)
RUN {LMNsFMPS)

DATA

THIS IS A COMMENT (PUNCKED C [N CSL 1)
DEF INE WEADING AND ENTER L+Pe MBDE
TITLE SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN

THIS BENCHMARK HAS BEEN PURPOSELY MADE QUITE COMPLEX T8 CEMONSTRATE
MANY BF THE OPTIONS AVAILABLE IN FFPS. USUALLY, CONTROL PRBGRAMS
ARE MUCH SIMPLER AND THE STANDARD BPT!ONS ARE USEDs

CALL ENTER(LP)

INITIALIZE MAJOR ERROR INTERRUPT VARIABLE
ASSIGN 300 T8 KMAJER
INITIALIZE MINOR ERRBR INTERRUPT VARIABLE
ASSIGN 300 78 KMINER
lsE;ETxng LIMIT 6F S MINUTES FRBM EXECUTIGBN BF THIS§ STATEMENT
T s
INITIALIZE TIME-BUT INTERRUPT VARIABLE
ASSIGN 45 TO KTIME
SPECIFY FOUR SYMBOBLIC UNITS (WBRKING FILES) 8N RAD

OO0 0O O 0O 000 NOOOn A0 0n

CALL DEVICE('FILEL1'sDISCs'B")
CALL DEVICE('FILE2',DISCs?C")
CALL DEVICE('FILE3',DISCstDY)
CALL DEVICE('FILES',DISCs'EY)

SPECIFY A SYMBBLIC UNIT BN TAPE (LBGICAL NUMBER A)
CALL DEVICE('TAPEA',TAPE,'F!')

ATTACH THE FOUR STANDARC [ePe FMPS FILES T8 THE
PREVIBUSLY DEFINED FBUR SYMBBLIC UNITS (RAD)

CALL ATTACHIMATRIX2'FILEL')
CALL ATTACH(INVERSE,'FILE2")
CALL ATTACH(UTIL1#'FILE3")
CALL ATTACH(UTIL2s'FILES")

naan [aXal

ATTACH THE RESTART FILE 76 LBGICAL TAPE A PREVIBUSLY DEFINED
CALL ATTACH(RESTART,'TAPEAY)

NBTE FOR THE ABOVEeMATRIX, INVERSE,UTIL12UTILZ2, AND RESTART
ARE INTERNAL FILES wHICH MUST ALWAYS BE ATTACHEC

EXCEPT RESTART [F N8 SAVING BR RESTARTING IS PREGRAMMED

SELECT DESIRED INFYT DATA RECORU AND SPECIFY PROSLEM NAME

OOOOO0O0 OO0

ADATA o TALLBYS!
APBNAME & 'FUSIBN'

(aXs]

LOAD INPUT MATRIX FRBM CARDS, USING RECORC 'ALLOYS!

CALL INPUT

CALL INPUT(FILEFILENAME) wBULD RESULT IN SEARCHING INPLT FILE
CALLED FILENAME FBR RECORD ALLOYS AND LOADING IT A§ INPUT MATRIX
IN THIS CASE BNE SHBULD FIRST DEFINE THE FILE AND ATTACK IT

BY MEANS OF DEVICE AND ATTACH CALLSe

IDENTIFY RIGHT=HAND=SIDE COLUMN AND COST ROW T8 BE USED

ARHS = 'ALBYL!
ABBJ s 'VALUE!

OOOO0O00O0 O

VARIOUS OPTIONS T8 DISPLAY MATRI X

[aXalaYaXaNala¥sl

DISPLAY ORIGINAL MATRIX [N STANDARD FARMAT

Appendix C

65

CALL BuTPUT

DISPLAY SRIGINAL MATRIX IN CODED FBRM
CALL ByTPYT(CODLD)

DISPLAY ORIGINAL MATRIX [N ROw BROEK
CALL GUTPUT(BYRBWS)

DISPLAY ORIGINAL MATRIX In COLUMM BRDER
CALL BUTPUT{BYCHLS)

EXAMPLE BF SO LUTIBN

VARIGUS INITIALIZATIONS FOR SOLULTION (BPYIMIZE)
SET 7O INVERT Nt LESS FREQUENTLY THAN AT INTERVALS RF & ITERATIONS
IFREQL » &

ASSIGN «EJGRT 8F 1¢5 T8 BBJECTIVE ROW
(140 RESULTS IN MINIMIZATION, «l¢C IN MAXIMIZATION)

FOBJWT w 10

OO0 O00Aa OONADOONCOMN ONO0 ONO OnNn ©

SET T8 PRINT ITLRATION {BG CACH ITERATION (PRINTER BUTP.T)

I1LOGE o 1
SET PRICING T8 BE MADE FRGM GROUPS OF Tw8 PROFITABLE VARIABLES

INCAND « 2

SET INVERSION INTERRUPT CELL T8 TRANSFER T8 STATEMENT 200
ASSIGN 200 10 KNV

NOW SET MINOR ERRBR INTERRUPT T8 CAUSE CREAT]ON BF RESTART TAPE
IF IT WERE 70 8CCUR DURING THE BPTIMIZE PHASE

ASSIGN 400 T8 KMINER

SET OPTIMIZE TO DISREGARD OPTIMALITY DURING PHASE ONE
FCHMPDJ » 090

SOLVE Le«Pe MATRIX

CALL BPTIMIZE

PRESERVE BASIS OF OPTIMAL SOLYTIBN

CALL SAVE

PRINT SBLUTION VALUES (CBLUMNS AND RBWS)
CALL SoLUTION

PRINT PRIMAL AND DUAL ERRERS

CALL ERRORS
EXAMPLE UF RANGE CALCLLATIONS
CALL RANGE

tEXAMPLE 6F CO8ST PARAMETRICS

MAMCAN NOAON 000 0 N0 ONO 00 000 000 00 0

SET INITIAL AND MAXIMUM THETA VALUES FOR COST PARAMETRI(S
FTHETAC » 0.0
FIHETACM o 100

SET T8 PRINT SOLUTIGBNS AT THETA INTERVALS 8F 405

FTHETACP » +05

IDENTIFY COST PARAMETRIC R8w (ThE BNE T8 BE MULTIPLIED BY THETA)
AP@EBJ o 'DELCST!

INITIALIZE SOLUTION REQUEST INTERRUPT VARIABLE

ASSIGN 600 Y8 KSOLTM

ASSIGN 700 18 KINV

[4 EXECUTE PARAMETRIC CHST RyN

CALL PARABBY

O 0O 00

CALL SBLUTIGN

C
c
c EXAMNPLE 0F RhRS PARAMETRIC RUN
C
c
< RESTORE SpTIMAL BASIS
CALL RESTORE
(4 SET INITIAL AND MAXIMUM THETA VALUES FBR RHS PARAMETRICS

FTHETAR = 040
FTHETARM » 1040

66 Appendix C

o

O 0O 000 0O NO O 00 6 0O O O000ONnNONn OO0

SET T8 PRINT SOLUTION AT THETA INTERVALS OF 1.0

FTHETARP « 1¢0

IDENTIFY RHS PARAMETRIC BLUMN (THE 8NE T8 BE MULTIPLIED BY THETA)
APRHS s 'DELPREDC!

EXECUTE PARAMETRIC RHS RUN

CALL PARARMS

CALL SOLUTION

STapP
THE FOLLOWING STATEMENTS CONTRSL THE RESPONSE TO INTERR_PTS

ENTER HERE FBR TIMEwSUT INTERRUPY
PRESERVE PROBLEM STATUS 8N RESTART TAPE

5 CALL SAVE

TERMINATE RUN
sStep
ENTER MERE WHEN INVERSIEBN INTERRUPY BCCURS

200 CALL INVERY

RETURN TO PRBCEDURE THAT CAUSED THE KINV [NTERRUPT
RETURN

ENTER WERE IN CASE UF MAJBR BR MINBR ERRORS

OISPLAY COMMUNICATION REG]ON VARIABLES AND FILE STATUS

300 CALL CoONDITION

TERMINATE FMPS EXLCUTION

SToP

ENTER HERE FOR MINSR ERROR INTERRUPT DURING 8PTIMIZE PHASE
DISPLAY FMPS STATLS

400 CALL ConDITION

D8 SAME AS IF TIMEBUT GCCURED

GO 18 &5

ENTER MERE WHEN SBLULTION PRINT<BUT 1S REQUESTEC (BASIS CHANGF
BR SBLUTIBN PRINT«BUT INTERVAL 8F THETA SATISFIED)

PRINT SalLUTION

600 CALL SOLUTION

PRINT VALUE BF [TLRATION COUNT
WRITE JTCNT

RETURN T8 PARAMLTRICS

RETURN

¢ ENTER HERE IF NUMERICAL ACCURACY CAUSES INFEASIRILITY DULRING PARAMETRICS
700 CALL INVERT
CALL OPTIMIZE
RETURN
4 END BF C(ONTROL PROGHAM
END
NAME ALLEYS
RBWS
N VALUE
£ viewo
L FE
L MN
(R V)
L MG
G AL
L sl
N DELCST
CBLUMNS
BINL VALUE 0403000
8IN1 YIELD 1+00000
81N FE 0¢15000
BIN cu 0003000
8INg MN 0002000
BINY MG 0+02000
8INg AL 04700006
BINY st 0.02006
BINt DELCST 1040
8IN2 VALUE 008000
BIN2 YIELD 1400000
BIn2 FE 0404000
BIN2 [«F] 0+05000
BIN2 MN 0004000
B8IN2 MG 0403000
B8IN2 AL 0079600
BIN2 S1 0+06000
BIN3 VALUE 0,17000
BIN3 YJELD 1,00000
BIN3 FE 0402000
BIN3 (V] 008000
BIN3 MN 0.01000
BIN3 AL 0080000
BIN3 L 0+08000
BINs VALUE 0012000
BINs YIELD 1+00000
Bine FE 0+0%000
BiN& Cu 002000
BING MN 0402000
BIN& AL 0¢75000
BiNe LT 0012000
BINS VALUE 0415000
BINS YIELOD 1+00000
BINS FE 0.02000
BINS cu 0406000
BINS MN 0.+02000
BINS MG 0.01000

Appendix C

67

BINS AL 080000

BINS S1 0.02000
ALUM VALUE 0421000
ALUM YIELD 1.00000
ALUM FE 0+01000
ALuM cu 0401000
ALUM AL 0097000
ALUM S1 0.010600
SILCON VALUE 0+38000
S{LCON YIELD 1.00000
SILCON FE 0403000
siLcen st 0.92000
RHS
ALOYY YIELD 2000+00000
ALOY1 FE 60400000
Aloyy cu 100+00000
ALOYL MN 40400000
ALOYL MG 30400000
ALSYL AL 1500400000
119121 s 30000000
oELPREDC YIELD 20000,0
RANGES
ALl SI 50000000
BOUNDS
UP PREDY BIN1 200¢00000
UP PRED1 BIN2 2500+00000
1.6 PRGD1 BIN3 508+00000
UP PRBD1 BIN3 800400000
L8 PROD1 BING 10000000
UP PRED1 BIN4 70000000
UP PRED1 BINS 150000000
ENDATA

1113% FEB 12,'69 1Ds0000

JoB 326,S0MD

LIMIT (TIME,90),(L6,1000),(Ut21000)2(D8,1000)

ASSI0N F3106, (OEVICE,CPAOS)

ASSIGN Fi1s(FILEsCLANG) 2 (BIN) 2 (WRITE»ALL)s (CONSEC), (SEQUEN)Y S
(BUTIN) » (RECL 230000}, (READsALL)

ASSION F122 (FILESUTILL)2(BINI»(WRITESALL) 2 (KEYED) s (DIRECT))
(OUTIN), (RECL»30000), (READsALL)

ASSIGN F33s(FILESUTIL2Y(BIN)2(WRITESALL) 2 (KEYED) S (CIRECT))
(OUTIN) 2 {RECL»30000), (READIALL)

ASSIGN Fi4s(FILEsMTRX) 4 (BINY» (WRITESALL) 2 (DIRECT)» (KEYED))
{OUTIN) s (RECL230000) s (READ2ALL)

ASSIGN Fi55 (FILEIVSE) 2 (BINY» (WRITESALL) 2 ({DIRECT) s (KEYED) 0
(BUTIN) 2 (RECL»30000), (READIALL)

ASSIGN F16s (DEVICE,9T)a (INBUT) 2 (INSNO26) 5 {BIN)Z (WRITESALL) S (SAVE)
RUN (LMN.FMPS)

68

12FEB6Y Oe

INTERNAL STATEMENT NUMBEK C TIME s 11334

c THIS IS A COMMENT (PUNCHED C IN COBL 1)
C
c DEF jNE HEADING AND ENTER L+Pe MEDE
c

1 e TITLE SDS SIGMA 5/7 « SAMPLE FMPS LePs RUN
C
€ THIS BENCHMARK HAS BEEN PURPBSELY MADE GUITE COMPLEX T8 DEMONSTRATE
C MANY BF THL BPTIGNS AVA[LABLE IN FMPSe USUALLY, CONTROL PROGRAMS
C ARE MUCH SIMPLER AND THE STANDARD OPTIBNS ARE USEDe
4

2.0 CALL ENTER{LP)
C
C
C INITIALIZE MAJBR ERROR INTERRUPT VARIABLE

3 e ASSIGN 300 TO KMAJER
4 INITIALIZE MINOR ERROR INTERRUPT VARTARLE

4 we ASSIGN 300 T8 KMINER
C SET TIME LIMIT 6F 5 MINUTES FRBM EXECUTION BF THIS STATEMENT

S e ITIME s 5
C INITIALIZE TIME«BUT INTERRUPT VARIABLE

6 *» ASSIGN 45 T8 KTIME
c SPECIFY FOUR SYMBUL]C UNITS (WBRKING FILES) 8N RAD
4

7 *e CALL DEVICE('FILEL',DISC,'BY)

8 s CALL DEVICE('FILE2'sDISCs'C')

9 s CALL DEVICE(FILE3',DISC,'C")

10 #» CALL DEVICE('FILEAY,DISC,'EY)
c
4 SPECIFY A SYMBBLIC UNIT 8N TAPE (LOGICAL NUMBER A)

11 »e CALL DEVICE('TAPEA',TAPE,'F')
d
C ATTACH THE FUUR STANDARL LePe FMPS FILES T8 TH’
4 PREVIGUSLY DEF INED FBUR SYMBBLIC UNITS (RAD!
C

12 se CALL ATTACH(MATRIX)'FILEL")

13 se CALL ATTACH{INVERSE,'FILE2")

1§ s CALL ATTACKR{UTILL,'FILEI"Y

i5 s# CTALL ATTACKILUTIL2sYFILES")
C
[ATTACH THE RESTART FILE T8 LBGICAL TAPE A PREVIIUSLY CEFINED
[

16 *s CALL ATTACH{RESTART,'TAPEA")

Appendix C

O

1e

[aXaXalalaXalsl

NOTE FBR TRE AuBVEMATRIX» INVERSESUTIL1,UTIL2, AND RESTART
ARE INTERNAL FILES WhICH MUST ALWAYS BE ATTACHLD
EXCEPT RLSTART IF NG SAVING OR RESTARYING IS PRHGRAMMED

SELECY DLSIRED INPUT DATA RECARD AND SPECIFY PROBLLM NAME

12FEB6Y O Os 24
17 *e ADATA s 'ALLOYS'
18 se APBNAME s 'FUSIGN'
C
C LOAD INPUT MATRIX FROM CARDS, USING RECBRD 'ALLOYS®
c
19 *» CALL INPUT
C
c CALL INPUT(FILEsFILENAME) WBULD RESULY IN SEARCHING INPUT FILE
[CALLED FILENAME FOR RECBRO ALLBYS AND LBADING IT AS INPUT MATRIX
C IN THIS CASE BNE SHBULD FIRST DEFINE THE FILE AND ATTACH IT
c BY MEANS OF DEVICE AND ATTACH CALLSe
[
c IDENTIFY RIGHT=HAND®SIOE CBLUMN AND COST RBW TS BE USED
c ¢ :
20 w» ARHS s 'ALBYL’
21 s ABBJ s 'VALUE?
9
£
C
c
c VARJOUS 8PTIBNS T8 DISPLAY MATRIX
c
[
c DISPLAY ORIGIMAL MATRIX IN STANDARD FORMAT
4
22 e CALL oUTPUT
C
4 DISPLAY SRIGINAL MATRIX IN CBDED FORM
c
23 e CALL BUTPUT(CBDED)
c
c OISPLAY ORIGINAL MATRIX IN ROW BROER
C
24 se CALL BUTPUT(BYRBWS}
c
4 DISPLAY BRIGINAL MATRIX IN CBLUMN ORDER
c
25 v CALL BUTPUT(BYCOLS)
c
C
c
c EXAMPLE B8F S8LUTION
4
C
c
c VARIBUS INITIALIZATIBNS FOR SBLUTIBN (BPTIMIZE)
d
4 SET T8 INVERT N8 LESS FREQUENTLY THAN AT INTERVALS OF 4 ITERATIGBNS
[4
26 se IFREQ] = &
12FEB6Y Oe O 3o
C
c ASSIGN WLIGHT BF 1¢0 16 BBJECTIVE Rew
g (100 RESULTS IN MINIMIZATIUN, =140 IN MAXIMIZATION)
27 s FORJWT = 140
c
c SET To PRINT ITERATIGN LBG EACH ITERATIBN (PRINTER SUTPUT)
¢ :
28 «» 1LEGP & 1
g SET PRICING T8 BE MADE FRSM GROUPS OF Tw® PROFJTABLE VARIABLES
29 #s INCAND s 2
c
E SET INVERSION INTERRUPT CELL T® TRANSFER TB STATEMENT 200
30 e ASSIGN 200 T8 KINV
c
c NOw SET MINOR ERRBR INTERRUPT T8 CAUSE CREATION OF RESTART TAPE
c IF IT WERE T8 SCCUR DURING THE OPTIMIZE PHASE
31 e ASSIGN 400 T8 KMINER
4
C SET OPTIMIZE T® DISREGARD BPTIMALITY DURING PHASE UONE
32 se FCMPDJY » 040
4
c SBLVE LePs» MATRIX
c
33 se CALL BPTIMIZE
c
c PRESERVE BASIS OF BPTIMAL S$BLUTIBN
34 #e CALL save
c PRINT SOLUTIBN VALUES (CBLUMNS AND REWS)
35 e c CALL SOLUTIGN
<

PRINT PRIMAL AND DUAL ECRRORS

Appendix C

69

[+
36 se CALL ERRORS
¢
4 EXAMPLE OF RANGE CALCULATIBNS
c
<
37 w» CALL RANGE
C
c
C EXAMPLE 8F COST PARAMETRICS
¢
C SET INITIAL AN MAXIMUM THETA VALUES FBR COST PARAMETRICS
33 o FYHETAC = CoD
39 #» FTHETACH = 10+
12FEB6Y Qs O 4o
c
4 SET T8 PRINT SBLUTIGNS AT THETA INTERVALS BF 0%
40 we FTHETACP = #05
C IDENTIFY COST PARAMETRIC ROW (THE ONE T8 BE MULTIPLIED BY THETA)
L3 S APBBy e 'DELCST!
c INITIALIZE SBLUTION REQGUEST INTERRUPT VARIABLE
42 e« ASSIGN 600 T8 KSOLTN
a3 e ASSIGN 700 TB KINY
c EXECUTE PARAMETRIC C8ST RUN
4 s CALL PARAGBY
28 e c CALL soLUTIBN
C
E EXAMPLE BF RHS PARAMETRIC RUN
C
4 RESTORL GPTIMAL BASIS
N6 ve CALL RESTORE
C SET INITIAL AND MAXIMUM THETA VALUES FBR RHS PARAMCTRICS
47 o0 FTHETAR s Qo0
48 e FTHETARM s 100
c SET TO PRINT SOLUTIGN AT THETA INTERVALS 8F 10
49 s FTHETARP » 1¢0
c IDENTIFY RHS PARAMETRIC BLUMN (THE BNE Y6 BE MULTIPLIED BY THETA)
50 se APRHS » 'DELPRBOC!
c EXECUTE PARAMETRIC RHS RUN
Sf #» CALL PARARNWS
82 »e c CALL SOLUTIBN
4
53 s STOP
£
C THE FOLLOWING STATEMENTS CONTROL THE RESPBNSE T8 INTERRUPTS
c
C
C ENTER MERE FOR TIME=B8UT INTERRUPT
C PRESERVE PROBLEM STATUS ON RESTART TAPE
54 #» a5 CALL SAVE
c TERMINATE RUN
55 e STOP
C ENTER HERE WHEN INVERSION INTERRUPT 8CCURS
56 se 200 CALL INVERT
c RETURN T8 PRBCEOURE THAT CAUSED THE KINV INTERRUPT
57 ws RETURN
4 ENTER WERE IN.CASE OF MAJOR BR MINOR ERRORS
4 DISPLAY COMMUNICATION REGION VARIABLES AND FILE STATUS
58 se 300 CALL CSNDITION
3 TERMINATE FMPS EXECUTION
59 se SToP
12FEB69 Oe Oe¢ Se
C ENTER HERE FOR MINOR ERROR INTERRUPT DURING BPTIMIZE PHASE
< DISPLAY FHPS STATUS
60 #» 400 CALL CONDITION
c DO SAME AS [F TIMEBUT BCCURED
61 e GO T8 45
C ENTER HERE WHEN SOLUTION PRINT=BUT IS REQUESTED (BASIS CHANGE
4 R SBLUTION PRINT=8UT INTERVAL OF THETA SATISFIED)
c PRINT SOLUTION
62 »» 600 CALL SOGLUTION
4 PRINT VALUE BF ITERATION COUNT
63 *e WRITE JTCNT
\ c RETURN T8 PARAMETRICS
64 o RETURN
c ENTER HERE IF NUMERICAL ACCURACY CAUSES INFEASIBILITY DURING PARAMETRICS
65 se 700 CALL INVERT
66 »e CALL OPTIMIZE
67 ve RETURN
4 END OF CBNTRUL PROGRAM

68 & END
INTERNAL STATEMENT NUMBER C TIME = $1135

70

Appendix C

12FEB63

INTERNAL STATEMENT NUMBER 1 TIME » 11135
NTERNAL STATEMENT NUMBER 2 TIME » 11135
NTERNAL STATEMENT NUMBER 3 TIME s §1:35
NYERNAL STATEMENT NUMBER & TIME » §1235
NTERNAL STATEMENT NUMBER & TIME » 11135
NTERNAL STATEMENT NUMBER 6 TIME » §1:35%
NTERNAL STATEMENT NUMBER 7 TIME » 11235
INTERNAL STATEMENTY NUMBER 8 TIME = 11338
INTERNAL STATEMENT NUMBER 5 TIME » 11135
INTERNAL STATEMENT NUMBER 10 TIME & {1335
INTERNAL STATEMENT NyMBER {1 TIME o 11335
NTERNAL STATEMENY NUMBER {2 TIME » 18135
NTERNAL STATEMENT NUMBER {3 TIME o 11335
NTERNAL STATEMENT NUMBER 14 TIME = 11338
NTERNAL STATEMENT NUMBER {5 TIME » 11235
NTERNAL STATEMENT NUMBER 16 TIME o 18835
NTERNAL STATEMENY NUMBER {7 TIME & 11335
NTERNAL STATEMENT NUMBER {8 TIME s $4:3%
NTERNAL STATEMENT NUMBER §9 TIME » 11335

BUFFER SIZES (BYTES) AREee MATRIX & 648 INVERSE s 10240

MATRIX STATISTICS
ROWS¢eeeveoee 9
8

2
7037
$7

LARGESTeeeee 92000000405
SMALLESTeceo 0+¢1000000e01

MAJBR ERRORS (]

MINGR ERRORS -}

INTERNAL STATEMENT NUMBEH 20 TIME » 1$:3S
INTERNAL STATEMENT NUMBER 21 TIME » 12135
INTERNAL STATEMENT NUMBER 22 TIME s 11235

J2FEBEY SDS SIGMA L/7 e SAMPLE F1PS. LePe AN ’ : : Oe 20 . 10

SRIGINGL MATRIK

LOWER BSUND 0400000 0400000 0400000 0000000 0400000 000000 0400000 . 000000
UPPER BBUND 50+00000
VALUE YIELD FE MN cu MG AL s1
VALUE N 100000 0400000 000000 0400000 000000 0.00000 0+00000 0400000
YIELD E 0400000 1.00000 0400000 0.00000 000000 0.00000 0.,00000 0400000
FE L 0400048 0000000 1+00000 000060 000000 0000060 0+00000 0+50000
MN L 0400000 0.,00000 0400000 100000 000000 0400000 0.00000 0+00000
cu L 0¢00000 0400000 0+00000 0400000 1+00000 000000 0.00000 0+00000
Mg L 0400000 0406000 0.00000 0.00000 0400000 100000 0.00000 0400000
s AL 6 0000033 0000006 0400000 000000 5408000 0000000 «1.00000 0+00000
LT L 0+00000 000000 0400000 0.00000 0.00000 000000 0,00000 1400000
DELCST N 000000 0.00000 000600 0400000 6+03008 060000 §+00000 0400000
12FEB69 SD5 SIGMA 5/7 » SAMPLE FMPS LePe RUN Os 3 le

BRIGINAL MATRIX

LBHWER BBUND 0.00000 0+00000 000000 400.00000 100+00000 0400000 0.00000 0400000
UPPER BBUND 200400000 2500000000 800000000 7004060000 150000000
DELCST BINL BIN2 BIN3 BIN& BINS ALUM stLCoN
VALVE N 0400000 0403000 0408000 0+17000 0+12000 0415000 de21000 0438000
YIELD £ 0400000 1+00000 100000 1400000 1.00000 1.00000 1.00000 100000
FE L 000000 015000 0404000 002000 004000 002000 8.01000 0903000
MN L 0400000 002000 0403000 0.01000 0402000 0.02000 0+00000 0:00000
[a]] L 0000000 003000 0405000 0,08000 002000 0406000 0401000 0+00000
MG L 000000 0402000 0403000 0.00000 0.00000 0.01000 0400000 0¢00000
. AL G 05006050 0+70000 0475000 0+30000 0475000 0+30000 G+97000 000000
S| L 0400000 0402000 0406000 0,08000 012000 0402000 001000 0¢97000
DELCST N 1400000 10400000 0400000 0+00000 0.00000 0.+00000 0400000 0+00000
12FEB6Y SDS SIGMA /7 « SAMPLE FMPS LePe RUN De 4e¢ 1a

BRIGINAL MATRIX

LOWER bHUND 0400000 0¢00000
UPPER BBUND
ALBY] DELPRBDC
VALUE N 0400000 0+00000
YIELD E 2000+00000 20000400000
FE L 60000000 0400000
MN L 4000000 0400000
v L 10000000 0.00000
MG L 3000080 0400600
* AL G 150000000 0+00000
S1 L 300400000 0.+00000
CELCST N 00000060 0.+00000

Appendix C 71

12FEB6Y SDS SIGMA /7 = SAMPLE FMPS LePe RUN Qs 5e ie

INTERNAL STATEMENT NUMBER 23 TIME » 11835

12FEB6S SpS SIGMA 5/7 = SAMPLE FMPS LePs RUN Oe 6o 1s
SRIGINAL PICTURE
LONER BBUND e s e o v 0 oe e oo CBo oo oo
UPPER BBUND B CDCCPD
VYFHRCMASUBBEBBASAD
AJENVGLIELITIITLILE
L E LNNNNNDULOL
VL ci123a8mCYP
ED s 61R
T N -}
D
c
VAMLUE N Jeosee s essUUTTTTTow
YIELD E eleseseeviiliTiIIDE
FE L es lees e s TUULULUVUE.
MN L s ool o s ee s YUUUU S eB o
4] L ooc!!’cogﬁuuuuu'gt
Ma L e v o o @ ! e 00 UeelU©@® oeBo
AL [} t o oo 0 9el o o TTTTITT D,
S1 t sseesveelsUlUTUDTC,
DELCST N N R R LU I A I I
12FgBe9 SDS SIGMA L/7 = SAMPLE FMPS LePe RUN O Te 1o
sYneL SUMMARY OF “MATRIX S ooy N -
RANGE COUNT (INCLJPHS)
4 LESS THAN +000001 0 e T
Y «000001 THRU +000009 [}
% +000010 +000099]
L] «000100 +000999]
v +003000 +009999 4]
¥} +010000 +099993 27
T +100000 0999999 14
1 14000000 1+000000 16
A 1+00000% 100000000 1
-] 10+000001 100000000 4
4 100000001 1,0000000000 1
1] 120004000001 105000000000 2
€ 10,000.000001 100, 000+000000 1
F 100,000+000001 1,000,000+000000 0
[} GREATER THAN 1,000,000+000000]
12FEB6Y SDS SIGMA 5/7 = SAMPLE FMPS LePs RUN Oe 8¢ 1o
INTERNAL STATEMENT NUMBER 24 TIME = 11335
12FEB69 SDS SIGMA H/7 = SAMPLE FMPS LePe RUN - Or 9¢ 1e
RBW YALUL NUMBER 1)
1+0000{VALUE) 0+0300(BIN) 0+0800(8IN2) 0+1700(BIN3) 0e¢1200(BING b Ce§S00(BINS
0+2100(ALUM) 03800(SILCEN)
ROW YIELD NUMBER 2
100004 ¥IELD } 1:0000(BINS } 1+0000(BIN2) 120000(BIN3) 1+0000(BINS) 1+0000(BINS
140000 ALUM) 1+0000(SILCBN) 2000+.0000(ALOYI) 20000+0000(DELPREDC) ’
ROW FE NUMBER 3
1+0000(FE) 0¢1500(B1INL) 0+0400(BIN2) 000200{BIN3) 0+0400(BING) 000200(BINS
0e01000aLUM) 0+0300(SILCEN) 60+0000(ALAYL)
ROW MN NUMBER &
10000 (MN) 000200(BINI) Q0+0400(BIN2) 0¢0100(BIN3) 0+0200(BING) 040200(BINS

4000000(AL8Y1)

72 Appendix C

ROW CU NUMBER S
100000(CU) 000300(B N}) 0+0500(BIN2) 0¢0800(BIN3) 0¢0200(BIN&) 0+0600(BINS)
0+0400¢ALUM) 100.0000¢ALOYL)
ROW MG NUMBER 6
{+0000¢MG) 000200(BIN1) 040300(R]N2) 0+0100(BINS) 30¢0000(ALBY!)
ROW AL NUMBER 7
«1+0000¢AL) 0e7000(BIN1) 0¢7500(BIN2) 0+8000(BIN3) 047500 (BIN&) 0+8000(BINS)
0¢9700(¢ALUM) 1500+0000¢ALEYL)
ROW S} NUMBER 8
1+0000(5]) 0e0200(BINS) 0+0600(BIN2) 0+0800(BIN3) 0e1200(BIN%) 0+0200(BINS)
G+0100(ALUM) 005700(SILCON) 30040000(ALBYL)
R8W DELCST NUMSER 9
1.0000(DELCST) =10+0000(BIN)
12FEB6S SDS SIGMA /7 = SAMPLE FMPS LePe RUN Os 10¢ 1o
INTERNAL STATEMENT NUMBER 25 TIME & 11:35
12FEB69 SDS SIGMA 5/7 e SAMPLE FMPS LePs RUN Os 114 1e
COLUMN VALUE NUMBER 1 LBWER 00000 UPPER oNONE,
{00000(vALUE)
COLUMN YIELD NUMBER 2 LOWER 040000 YPPER 040000
1¢0000(YIELD
COLUMN PE NUMBER 3 LOWER 040000 UPPER oNONE,
{+0000(FE)
COLUMN MN NUMBER 4 |BWER 040000 UPPER oNBAE
100000 (MmN)
COLUMN cU NUMBER 5 LOWER 040000 UPPER oNBNE,
f+00001cy)
CBLUMN MG NUMBER 6 LBWER 040000 UPPER 4NBNE,
{+0000(MG)
COLUMN AL NUMBER 7 LOWER 040000 UPPER «NBNE,
«§+0000 (AL)
COLUMN §] NUMBER 8 LOWER 040000 (PPER 5040000
{.0000¢s1)
CBLUMN DELCST NUMBER 9 LOWER 040000 UPPER o«NBNE,
1+0000(DELCST)
COLUMN BINg NUMBER 10 LBWER 040000 UPPER 20040000
0¢0300(VALUE) 1+0000(YIELD) 0¢1500(FE) 040200 (MN) 0+0300¢CU) 0+0200(MG
0+7000¢AL) 0¢0200(S!) =1040000(DELCST)
COLUMN BINZ NUMBER 11 LOWER 040000 UPPER 250040000
0e0800(VALVE) 140000(YIELD) 0e0400(FE) 0+0400(MN + 0+0500(CU) 040300(MG
0+7500¢AL) 0:i0600(S])
COLUMN BIN3 NUMBER 12 L8#ER 40040000 UPPER 80040000
Ce1700(VALUE) 1¢0000(YIELD) 040200(PE) 0+0100(MN) 0+0800(CU) 0+8000(AL
0.0800(s])
COLUMN BIN& NUMBER 13 LOWER 10040000 (PPER 70040000
Qe1200(VALLE) 1+0000(YIELD) 0s0400(FE) 0¢0200(MN) 0+0200(CU) 0+7500(AL
Oe1200(81)
COLUMN BINS NUMBER 14 LBWER 0,0000 UPPER 150040000
.0e1500(VALUE) 1¢0000(YIELD 0e0200(FE) 0+0200¢MN) 0e0600(CU) 0:0100(Ma
0+8000(aL) 0¢3200¢S1)
COLUMN ALUM NUMBEK 15 LBER 0¢0000 LPPER ¢NAKEs
0e2100(VALUE) 1¢0000(YIELC) 0+0100(FE) 0+0100(CY) 0+3700(AL) 0+0100¢S1
12FEB63 SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN Os l1e 24
COLUMN SILCON NUMBER 16 LOWER 0+0000 YPPER «NBNEe
0¢3800{vALLE) 1+8000¢(YJELD) 0¢0300(FE) 0+9700tS!)
COLUMN aLeYg NUMBER 17 LOWER 040000 UPPER 040000
2000¢0000(YIELD) 60¢0000(FE) 4040000 (MN) 1000000(Cy) 30¢0000(MG) 1500¢0000(AL)
300+0000(s])
COLUMN DELPRODC NUMBER 18 LOWER 0+0000 UPPER 0+0000

20000+0000(YIELD)

Appendix C

73

12FEBS9 SDS SIGMA 5/7 = SAMPLE FMPS LePs RUN

11135
11135

INTERNAL STATEMENT NUMBER 26 TIME =
INTERNAL STATEMENT NUMBER 27 TIME »
INTERNAL STATEMENT NUMBER 28 TIME
INTERNAL STATEHMENT NUMBER 29 TIME »
INTERNAL STATEMENT NUMBER 30 TIME o 11835
INTERNAL STATEMENT NUMBER 31 TIME «
INTERNAL STATEMENT NUMBER 32 TIME »

.

INTERNAL STATEMENT NUMBER 33 TIME « 1£13%

NEGATIVE DJ COUNT = 7 SELECTED 4 VARIABLES BEST 0OJ ® +0¢198000D+01

ITERs SUM OF INF NINF GBJECT VALUE V~IN MOVE REDUCED COSY ACTIVITY VeBUT MOVE
1 0¢281100000+0% 3 0+395000000+03 15 Le8 0+210000000400 0¢1500000004+04 2 BeL
2 0+191000000+03 1 00428822920+03 16 L+ 0+170000000+00 0¢198553330+03 8 Bey

SOLUTION FEASIBLE AT ITERATISN

NEGATIVE OJ COUNT o 5 SELECTED 3 VARIABLES BEST DJ = «0¢1817710+00

ITERs SuM 8F INF NINF~ BBJECT VALUE veIN MBVE REDUCED COST ACTIVITY Ve8UT MBVE

3 0¢000000000+00 O 0¢392468750403 10 L=U =0¢181770830+00 0+200000000+03 NoNE
& 0,00000000D+00 O 0¢383270680+03 13 =8 =04109479170+00 04383458850+02 3 Bel
INTERNAL STATEMENT NUMBER 36 TIME e 11235

3 NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED 0 ROWS AND 6 COLSe

Oe 12¢ 1s

plver
0¢100000000+01
0+960000000+00

plver
0¢277083330=01

3 IN NGNeCOMPLETELY TRIANGULAR]ZED PART, OF THESE 2 WHERE NOT TRIANGULARIZED AND 0 WERE REJECTED FBR T80 SMALL A PIVETe

MATRIX TB BE INVERTED hAD 9 COLS AND 23 ELEMENTSs INVERSE HAS™ 7 COLS AND 21 ELEMENT

1800 MS FOR INVERT
IRTERNAL STATEMENT NUMBER 57 TIME » 113135
INTERNAL STATEMENY NUMBER 33 TIME = 11138

NEGATIVE DJ COUNT « 4 SELECTED 2 VARIABLES BEST Oy * =0+370564D400

ITERs SUM 8F INF NINF OBJECT VALUE ve=IN MBVE REDUCED CBST ACTIVITY VeBUT MBVE
S 0000000000400 0 0¢3870171%0+03 10 U=B <0+370563910+00 0+11132538D+03 13 Bey
6 0+000000000+00 0 0032325701D+03 14 LeB <0¢49038748D~01 0.48451743D+03 7 Bel

NEGATIVE DJ CBUNT = 2 SELECTED 1 VARIABLES BEST DJ » =0¢611770D=01

ITERs SyuM oF INF NINF~ OBJECT VALUE veIN MOVE REDUCED COST ACTIVITY VesUT MBVE
04000000000+00 O 0300931280403 11 =B =0s61176966D=01 0+364936890+03 10 BeL

NEGATIVE DJ COUNT » 2 SELECTED 1 VARIABLES BEST 0J » =0¢156802001

ITERY SuM 8F INF NINF~ BBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY VeBLT MBVE
8 000000000D+00 0 00297072b50003 13 Y= -0-1568022#0-0} 00286095950403 ° T & Bel

INTERNAL STATEMENT NUMBER 36 TIME s 11335

8 NONeBASIC SLACKSe COMPLETELY TRIANGULARIZED O RBWS AND & COLS,

plver
0¢50451128D+01
04141691510400

plvet
00¢1499856850+00

plver
«0+14503836D01

5 IN NONSCOMPLETELY TRIANGULARIZED PARTs BF THESE 2 WHERE NBT TRIANGULARIZED AND 0 WERE REJECTED FOR 768 SMALL A pIVETe
MATRIX T8 BE INVERTED HAD 9 COLS AND 37 ELEMENTS. INVERSE HAS™ 10 COLS AND 38 ELEMENTS.

600 M3 FOR INVERT
INTERNAL STATEMENT NUMBER 57 TIME = 11335
INTERNAL STATEMENT NUMBER 33 TIME » 18135

12FEB&9 SDS SIGMA L/7 = SAMPLE FMPS LePes RUN

NEGATIVE DV COUNT = 1 SELECTED 1 VARIABLES BEST Dy ¢ =0¢3432600-02
ITERY SUM 8F INF NINF~ @BJECT VALUE V<IN MBVE REDUCED COST ACTIVITY VeBUT MBVE
9 0000000000400 O 0296216610403 12 L=8 0¢948289640-02 0+902527080+02 I BelL

NEGATIVE OJ CBUNT = O SELECTED O VARJABLES BESY Dy @ 0+0000000+00
OPTIMAL SOLUTIONe OBJECTIVE VALUE o 02296216610403

INTERNAL STATEMENT NUMBER 34 TIME » 111357
INTERNAL STATEMENT NUMBER 3% TINE « 11338

Oe 12e 2e

plver
0¢651458140+00

12FEB6I SDS SIGMA /7 = SAMPLE FMPS L+Ps RUN

ICENTIFIER SECTION

PROBLEMs s+ NAMEee FUSION

MBDEse LP

CLASSe LP

STATUS OPTIMALe
FUNCTIONAL NAMEss VALUE

8BJECT MINIMIZE

VALUE® 296216553
RESTRAINTe NAMEws ALOY]
ITERATION. CBUNT:

Oe 13¢ 1o

12FEBS9 SDS SIGMA H/7 = SAMPLE FMPS LePs RULN

SECTION 1 « ROWS PRIMAL=DUAL BUTPUT

NUMBER ooLABELe AT s0aACTIVITYoss SLACK ACTIVITY seLOWER LIMITe eeUPPER LIMITe oDUAL ACTIVITY
1 VALUE FR 2960216553 2960216797 NONE NONE 1+000000
2 VYIELD EQ 2000000000 0000000 20004000000 2000000000 04013595
3 FE uL 60+000000 04506660 NONE “35,505058 2e568231
A MN UL 404000000 04000000 NONE 400000000 De544404
5 Cu 8BS 83967439 160032486 NBNE 100000000 04000000
6 Mg 8s 134960231 100397114 NONE 30000000 00000000
7 AL LL 15004000000 04000000 1500000000 “RONE =D:251988

74 Appendix C

Oe 130 2e

0o INPUT COSTeo
1.000000
0,00

2000000
£,880002
00000000

04000000
0000000
0,000000

+REDUCED CBS8Ts

0+000000
0:033898
28842237
0583404
0.086600

0000000
0.231986

& st Lt 250+000000 504000000 2504000000 3004000000 =0e485199 04000060 e 485195
9 DELCST FR 54000000 0,008000 NBNE N8N 04000000 0.006000 0,000000
12FEB6S SPS SIGMA /7 = SAMPLE FMPS LePe RUN Os 13 3
SECTION 2 » CBLUMNS PRIMAL=DUAL BUTPUT
NUMBER ¢oLABEL® AT +eoACTIVITYsos eINPUT CBSTes ooLOWER LIMITe eeUPPER LIMITe oREDUCED COST.
10 8INg LL 040030000 04030000 00000000 2004000000 0e253624
Il BIN2 8g 665i382773 00080000 00000000 2500000000 00000000
{2 sina 8s 4900252686 0+1760060 4004000000 800+000000 04000000
{3 BING s 4284187800 04120000 100000000 7004000000 0+000000
{s BINS LL 02000000 0.150000 04000000 1500,000000 04014856
IS ALuM as 2994438916 0+2106000 00000000 NBRE 0000000
I6 SILCoN. 8BS 1204577606 04380000 04000000 NONE 04000000
fs oeLPrADC Eo 0+000000 0.800000 0¢000000 04000000 2714913330
12FEBEI SDS SIGMA 5/7 o SAMPLE FMPS LePs RUN O 14s 1,
INTERNAL STATEMENT NUMBER 36 TIME « 31135
12FEBE9 SpS SIGMA 5/7 « SAMPLE FMPS LePs RUN Oe 16e le
PRIMAL ERRORS
NUMBER eoNAME o ¢ ERRBR RHS
1 vALLE 0¢790265630+10 0+000000000+00
3 rE 0+218136620«1 04600000000+02
& MN 0.151385600e81 0,400000000+02
S cv 04293667310-10 0,100000000+03
& MG 04236610730+11 0,30000000p+02
7 AL 8172238560410 04150000000+04
8 gl 0+612203620-10 0.300000000+03
MAXIMUM ERRORS
DUALees 0¢000000000+00
PRINACe 0479036363010
INTERNAL STATEMENT NUMBER 37 TIME « 11136
12FEB6Y SOS SIGMA 5/7 o SAMPLE FMPS LePe RUN O 17 le
RANGES FOR VARIABLES AT LIMIT LEVEL
=LBWER eee|/PPERecccvanccas
NUMBER AT ooNAMEes oLBWER LIMITee oUPPER LIMITes +REDUCED COSTe PRBCESSe eo¢ INCREMENTeos AT PROCESSs ¢ o INCREMENT o0 AT
2 EQ YIELD 20009000000 20004000000 00013596 BIN3 44931386 LL cu 14,034788 LL
I UL FE NONE 80000000 20568231 BINY «83109840 LL BIN3 T24899783 L
& UL MN NBNE 40+000000 0+544404 3ING *835768383 UL BIN3 14886909 LL
7Ll AL 15000000000 NBNE 00251986 CU «14+215780 LL BIN3 44921259 ({
8 (L st 2502000000 300.000000 0+435198 CU =18:671292 LL 8IN3 54060728 LL
as
10 (L BINS 04000000 2004000000 0253624 BING «284824753 UL BIN& 33.880386 LL
I8 LL BINS 0§000000 1500+000000 0+014855 BIN3 »2013787399 UL BIN3 584795853 L
12FEB69 SDS SIGMA 9/7 o SAMPLE FMPS LePe RUN Os 18 1e
RANGES FUR VARIABLES AT INTERMECIATE LEVEL
LBWER UPPER save
NUMBER AT ¢oNAMEes ¢eeACTIVITYase ¢eINPUT C8STes PRBCESSe oo INCREMENTeeo AT PROCESSe oe¢INCREMENTees AT
1 BS VALUE «296¢216797 14000000 NBNE FE 14000000 LL
58S Cu 16032486 04000000 BINS «00214742 LL MN 00306131 LL
6 BS MG 10+03971 0+000000 MmN «0e287567 LL BIN 14796180 LL
9 85 DELCST 01000000 04000000 BIN «04025362 LL NBNE
(1)
11 8S BIN2 6650342773 04080000 BIN1 ©0e042777 LL MN 04008627 LL
12 8S BIN3 $90+252685 04170000 mN «04010175 LL BINS 04009483 LL
13 8S BING 4244187500 0412030060 mN «0¢011007 LL BIN] 04026506 LL
I3 BS aLum 299+638916 0210000 AL =0s021152 LL MN 0+016215 LL
16 8S SILCeN 12095877606 00380000 S| «0e231724 UL MN 04086667 LL
12FEBEI SDS SIGMA 5/7 « SAMPLE FMPS LePe RUN Os 19¢ 14
INTERNAL STATEMENT NUMBER 38 TIME » 11836
INTERNAL STATEMENT NUMBER 39 TIME » 11138
INTERNAL STATEMENT NUMBER &0 TIME » 1336
INTERNAL STATEMENT NUMBER &1 TIME = 11133
INTERNAL STATEMENT NUMBER &2 TIME & 11:36
INTERNAL STATEMENT NUMBER 43 TIME » 11338
INTERNAL STATEMENT NUMBER & TIME » 113138
ITERe SyM OF INF NINF OBJECT VALUE VeIN MBVE REDUCED COST ACTIVITY VeBUT MOVE PIver THETA
10 0+000000000+00 0 00296216610+03 10 LeB 04253624850+00 00338804000402 13 Bel 0495635921D401 0425362435001
11 0:000000000400 O 0292648180403 § LeB 0054440433D+00 04437031350401 5 BelL 04253431430+01 0.358948910-01
12 0+000000000+00 0 0e28975135D403 18 LeB 0089927007D202 0+534255730+03 11 BeL 0+115613550401 0.41028457001

Appendix C

75

INTERNAL STATEMENT NUMBER 65 TIME »

11136

! NON=BASIC SLACKSe COMPLETELY TRIANGULARIZED

B IN NON«COMPLETELY TRIANGULARIZED PART. OF THESE

C ROWS AND

& COLS
3 WHERE NOT TRIANBULAR!!ED AND

0 WERE REJECTED FOR ToO

SHALL A PIVETy

MATRIX T8 BE INVERTED hAD 9 COLS AND 33 ELEMENTS. INVERSE HAS™ 10 COLS AND 39 ELEMENTS,
600 MS FOR INVERT
INTERNAL STATEMENT NUMBER 66 TIME « 11136
NEGATIVE OJ COUNT » 0 SELECTED O VARIABLES BEST Dy * 0.0000000+00
OPTIMAL SOLUTIONe OBJECTIVE VALVE s 00289751360+03
INTERNAL- STATEMENT NyMBER 67 TIME s 11335
INTERNAL STATEMENT NUMBER 34 TIME » 11335
ITERe SUM OF INF NINF BBJECT VALUE V=IN MOVE REDYCED CeosT ACTIVITY V=BUT MOVE PiveT THETA
13 0:000000000+00 0 Q257451480403 8 LeB 0e508619570+C0 0©+133981070+02 12 BelL 0028484933D402 0.625185190=01
1% 07000000000+00 0 0+2857446BD+03 7 L=8 00370370370-01 0876808510402 10 BeU =0¢49434857D400 0970010638001
NO MAX]IMUM PARAMETER AT THETAs 0.700106001
INTERNAL STATEMENT NUMBER 8§85 "TIME w 11136
12FEB6I SDS SIGMA 5/7 = SAMPLE FMPS LePe RUN D 200 1o
JOENTIFIER SECTION
PROBLEMesee NAMEee FUSION
MBDEee LP
CLASSé LP
STATUS enxmu.-
FUNCTIONAL NAMEee VALUE
OBJECT MINIMI2
VALVE® .196u.23~375
RESTRAINTe NAMEse ALOYI
ITERATIONe COUNTS 14
PARAMETRIC MBDEes COST
NAMEes+ DELCST
VALUE s 10000000
12FEB63 SOS SIGMA 5/7 » SAMPLE FMPS LePe RUN Oe 20¢ 2¢
SECTION 1 = ROWS PRIMALeDUAL SUTPUT
NUMBER osLABEL® AT oe¢ACTIVITYoes SLACK ACTIVITY <¢oLBWER LIMITe ¢eUPPER LIMITS oDUAL ACTIVITY s«oINPUT CBST:e sREDUCED COSTs
1 VALUE FR 3854765869 «385.766113 NONE NONE 1000000 1000000 00000000
2 YIELD (4] 20003 04000000 20004000000 2000,000000 »0+270000 0.,000000 «0+270000
3 FE uL "60+000000 o.oooooo NONE 60000000 60308810 0.000000 69308810
& MN 8§ 12+1%0213 27.829773 NONE %0,000000 00000000 04000000
5 Cu 8s 56468079 43,531906 NONE 100,000000 0000000 0.000000 0,000000
6 Mg 8s 5085106 240914886 NONE 30 00000000 04000000 O
7 AL as 1587680684 87.580847 15004000000 *7 TNBRE 04000000 0000000 0+000000
8 8] LL 2504000000 50,000000 250000000 3004000000 *0+308811 0,000000 »0¢308511
9 DELEST FR =2000:000000 1999,939785 NGNE NARE 104000000 18.,600000 00000000
12FEB6S SDS SIGMA S/7 SAMPLE FMPS LsPe RUN 0s 20s 3
SECTION 2 = COLUMNS PRIMAL=DUAL OUTPUT
NUMBER «oLABEL® AT «ooACTIV]TYess «¢INPUT COSTes eolOWER LIMITe eeyUPPER LIMITs +REDUCED COST.
10 BIM uL 200¢000000 «99,970001 04000000 2004000000 =994299896
i1 8INe LL 0000000 00080000 0+000000 2500000000 0e043830
{2 BIN3 LL 400000000 04170000 4004000000 800.000000 00003489
i3 BINe LL 100 +000000 0.120000 100,000000 700,000000 040865319
Is BINS 8S 108+510635 0150000 04000000 1500000060 04000000
{5 aLumM as 995-76;029 04210000 04000000 NONE 04000000
16 sSiLcen BS 1950744675 04380000 04000000 NONE 04000000
13 OELPRODC EO 04000000 0000000 04000000 04000000 «54000003906
12FEBEI SDS SIGMA 9/7 = SAMPLE FMPS LePe RUN O 21¢ 1e
INTERNAL STATEMENT NUMBER %6 TIME » 11136
INTERNAL STATEMENT NUMBER &7 TIME o 11336
INTERNAL STATEMENT NUMBER &3 TIME o 11338
:mr:mm. STATEMENT NUMBER 49 TIME o 11136
INTERNAL STATEMENT NUMBER S0 TIME & 11136
INTERNAL STATEMENT NUMBER 81 TIME » 11338
ITERs SUM OF INF NINF OBJECT VALUE VeIN MOVE REDUCED COST ACYIVITY VeBUT MBVE PlveY THETA
13 0+000000000+00 0 00296025790+03 14 L8 0414553957001 0000000000400 S Bel =0¢67783394D=01 0070173942003
1 04:000000000+00 0 0e303154390+03 7 LsB 0¢979974440=02 0.000000000+00 15 Bel =00632722620401 0.223997830°
4 0+000C00000+00 0 0317018270403 18 Leg 0015488215002 0,000000000400 12 Bl =0.113304710+01 0,913651880=02
INTERNAL STATEMENT NUMBER™ 68~ 'TIME » {1136
S NONeBASIC SLACKSe COMPLETELY TRIANGULARIZED 0 ROWS AND & COLSe

8 IN NONeCOMPLETELY YEIANGULARIZED PART, OF THESE

MATRINY 78 or IuuEEAYCH wAD

T e w e

9 caLs AND

M3 FOR INVERT

oo
TERNAL STATEMENT NUMBER 66 TIME =

76 Appendix C

11136

2 WHERE NOT TRI&NGULAR!IED AND
317 ELEMENTS. INVERSE HAS™

11 C8LS AND

39 ELEMENTS,

0 WERE REJECTED FOR TBB SMALL A PIVOTe

NEGATIVE OJ COUNT = O SELECTED

OPTIMAL SOLUTIONs BBJECTIVE VALUE = 00317018770+403

INTERNAL STATEMENT NUMBER &7

TIME s 11236
INTERNAL, STATEMENT NUMBER 83

TIME « 11336

O VARIABLES BEST Dy =

040000000400

ITERs SuM OF INF NINF OBJECT VALUE VeIN MAVE REDUCED COST ACTIVITY VeBUT MBVE Plvert THETA
%3 0000000000400 O 0e44783129D403 4 LeB 00908284020+00 0,000000000+00 13 Bel =0.748%20710402 0432162577001
% 00000000000400 O 0Qi890M41490403 5 L=B 0¢%07114620400 0+000000000+00 11 Bel =0,928853750401 0e115388300400
PREMATURE MAXIMUM AT THETAs G.1193880400
INTERNAL STATEMENT NUMBER 52 TIME = 11836
12FEBEY SDS SI1GMA /7 = SAMPLE FMPS LePe RUN Qe 22¢ 1.
IDENTIFIER SECTION
PROBLEMeee NAMEes FUSION
MBDEse P
CLASSe LP
STATUS OPTIMALe
FUNCTIONAL NAMEes VALUE
BBJECT MINIMIZE
VALUE® 8904441406
RESTRAINTe NAMEses ALOYL
ITERATIONe COUNTS 14
PARAMETRIC MODEss RHS
NAMEee DELPRODC
VALUE ¢ 0+119388
12FEB63 SDS SIGMA 5/7 e SAMPLE FMPS LePs RUN Os 22¢ 2e
SECTION | « ROWS PRIMAL=DUAL SUTPUT
NUMBER eoLABEL® AT 4ooACTIVITYooe SLACK ACTIVITY +eLBWER LIMITe oeUPPER LIMITe oDUAL ACTIVITY *+INPUT CBSTee +REDUCED COSTe
1 VALUE FR 890+441406 =890+ #41650 NONE NONE 1+000000 1.000060 0000000
2 YIELD EQ 2000+000000 04000000 2000.000000 2000,000000 =0¢270000 0.000000 *0+270000
3 FE UL 604000000 0.000006 NONE “60.000000 ‘60308810 0000000 6¢308510
4 NN 8s 17+528274 22878714 NBNE §0.+006000 04000000 08.+000000 0+000000
$ cu 8s 1002000000 04000000 NONE 100,000000 04000000 . 0000000 0+000000
6 Mg B8s $e780638 240239359 NONE 30-009590 00000000 +000000 040006000
7 AL 8S 3905:159424 24050159424 15000000000 “NONE 0+000000 0.000000 0000000
8 S L 250§000000 50¢000000 2504000000 300+000000 ©0+308531 04000000 *0+308811
9 DELCST FR 0000000 04000000 NONE NBRE 04000000 0.000000 0000000
12FEBSY SPS SIGMA 5/7 e SAMPLE FMPS LsPe RUN Ce 22¢ 3.
SECTION 2 « COLUMNS PRIMAL=DUAL SUTPYT
NUMBER ooLABELe AT ¢ooACTIVITYooe oo INPUT COSTee soLOWER [IMITs +*UPPER LIMITe oREDUCED COST.
10 BNy 18 0000000 04030000 ° 04000000 200000000 00700806
11 8IN2 L 00000000 0080000 0000000 25%00,000000 00043830
{2 BiIn3 LL 4004000000 0170000 4004000000 800,000000 00001489
13 BINs LL 100:000000 0.{20000 100000000 700 .0600000 00065319
{4 BJNS 8§ 5784083721 04150000 " 04000000 15004000000 00000000
15 ALUM 8s 31430616943 04210000 09000000 NORE 0+000000
16 siLcen BS 168i085098 04380000 00000000 NONE 04000000
I8 OELerSDC Eo 04080000 c.oooono 04000000 0000000 54004003908
12FEB69 SDS SIGMA 5/7 « SAMPLE FMPS LePs RUN De 230 1

INTERNAL STATEMENT NyMBER 53 TIME = 11:36
*

*EXIT
TOTAL JoB TIME 1e30
PROCESSOR EXECUYION TIME 201
PROCESSOR [/8 TIME 07
PROCESSOR OVERHEAD TIME «07
USER ExzcuuaN TIME 048
USER 1/8 TIME o52
USER BVERHEAD TIME 75
BF CARDS READ 316
6F CARDS PUNCHED 0
OF PROCESSBR PAGES ouT 2
OF USER PAGES oyT 35
OF DIAGNOSTIC PAGES OUT 0
OF SCRATCH TAPES USED 0
OF SAVE TAPES USED 0
8F DISK READS AND WRITES 1594
OF 018C READS AND WRITES 2957
TEMPBRARY DISC SPACE LSED 17
PERMANENT DISC SPACE USED 0
ACCUM+ PERMs DISC SPACE USED 0

JOB 326,50Mp
LIMIT (TIHE;)0):(LB;1000);(UU;1000):(LS:IOOOI

Appendix C

77

ASSIGN F1106, {DEVICE)CPADS)

ASSIGN Fi1s(FILEsCLANG)# (BIN)# (WHITESALL) s (CONSEC) s (SEQUEN)s;
{8UTIN); (RECL#30000)» (READSALL)

ASSIGN Fi2,(FILESUTILL 2 (BIN) 2 {WRITESALL) s IKEYED)) (DIRECT))
(BUTIN) s (RECL230000), (READsALL)

ASSIGN Fi3,(FILEsUTIL2) 2 (BIN) 2 (WRITESALL) s (KEYED), (DIRECT) s
(BUTIN)» (RECL»30000) s tREADS ALL)

ASSIGN Fids (FILEeMTRX)2(8INT s CWRITESALL) s CDTRECT) 2 (KEYED)
tOUTINY » (RECL 2»30000), (READ#ALL)

ASSIGN Fi65, (FILEs IVSE) 2 (BIN) s (WRITESALL) s (DIRECT) 2 (KEYED) 2}
{BUTIN1 5 {RECL»30000) s tREAD2ALL)

RUN (LMN2FMPY)

UATA

ano

DEFINE WEADING AND ENTER SEPERABLE PROGRAMMING MOOE

TITLE NONsLINEAR PRUBLEM NO 6
CALL ENTER(SEP)

SPECIFY FOUR SYMBOLIC UNITS(WORKING FILES) 8N RAD

CALL DEVICE('FILEL1*»DISC,'D")
CALL DEVICE('FILER2',DISCrC))
CALL DEVICE('FILE3',D18C,'0")
CALL DEVICE('FILEA'SDISCs'EY)

ATTACH THE FBUR STANDARD FMPS FILES T8 THE FOUR
PREVIBUSLY DEF INED SYRBELIC UNITS(RADIs

CALL ATTACH(MATRIXs'FILELY)
CALL ATTACH{INVERSE2'FILE2')
CALL ATTACH(UTIL14'FILEI")
CALL ATTACH{UTIL2s'FILEaY)

aon

(aY2Xals)

INITIALIZE INTERRUPT VARIABLES

ASSIGN 100 10 KMAJER
ASSIGN 200 10 XIGER
ASSIGN 300 18 KNFS
ASSIGN 400 18 KyBS
ASSIGN 500 T@ KINV

ADATA s 'NLPSTDOL'

onDn

LBAD INPUT MATRIX FRBM CARDS» USING RECORD 'NLPSTDO1'
CALL INPUT
IDENTIFY RIGHT«NAND=SIDE COLUMN AND CBST ROW T8 BE USED

onan o0nn o

ABBJ ® '88JT '
ARHS s 'IRHS '

SET YO INVERT NO LESS FREQUENTLY THAN AT [NTERVALS BF
IN OPERATION®)»

*avey
!NVT?;ETEHE?t SHBULD BE USEDe

IFREQI » 50

an OoOOoAnNoOOAOOnONo

50 ITERATIBNS(NOTL! AUTSMATIC INVERT ON TIME IS BY DEFAULT

NBTEL TO TURN OFF ThE AUTEMATIC INVERT ON TIME, THE FOLLOAING

INITIALIZE ITERATION LOGGING FREQUENCY T8 PRINT EVERY ITERATION

ILOGP = 1

SPECIFY MINIMIZATION
FOBURT o 1o

SOLVE SEPERABLE MATRIX
CALL 8PTIMIZE

DISPLAY PROBLEM SOLUTION
CALL seLUTION

SToP

fnOanNn onn 000 o

ENTER MERE FBR nAJOR ERRDR CONDITIONS
100 CALL CONDITION
SToP

(aXs1a)

ENTER HERE FOR [/0 ERROR CONDITION
200 CALL CONDITION
ST0P

oNne

ENTER MERE FOR NO FEASIBLE SOLUTION CBNDITION
300 CALL ConDITION
ENTER HERE FOR UNBOUNDED SOLUTION CBNDITION

on Ono

78 Appendix C

4
400 CALL SaLuTlen
STeP

C
c ENTER HERE FOR INVERSION INTERRUPT CENDITIBN
$00 CALL INVERT
RETURN
END
NAME NLPSTDOY
ROWS
N 8BJT
E ROMI
E ROW2
€ R8W3
E ROWa
£ ROWS
€ ROWS
E R6w?
£ RONS
E ROus
COLUMRS
x5 ROWe 200,
UBOGUNDY 'MARKER!
ul 8ByT 9,
ul Rowg .30,
ue 88JT *3.1
2 ROWY 10,
UBBUND2 'MARKER!
[Tk 8aJ7 2.3
u3 RoW2 10,
vi 68J?Y 2,9
vi ROW2 10,
1] [N) o2k,
us ROW2 80,
$380UND 'MARKER!
35 1 Row} *:179619
31 RowW3 «14886%0
38 1 ROWS «350732
351 ROW6 «150732
kI3 RoWY «050732
S ROWS 050732
35 ROWS =e50732
3 2 ROW1 181719
32 ROW3 *1+30877
82 ROWS » 9502080
3 2 ROW6 =502080
32 Row? =v502080
32 ROWE « 502080
3 2 ROW9 « 552080
3$ 3 REWY =,18382
35 3 ROW3 193084
33 ROWS *0498350
33 ROWé =:4983%50
35 3 RBW? *+498350
33 Rewg «0496350
38 3 ROWY *0496380
35 & ROWY 185921
35 & ROW3 «109529
IS REWS «1490730
35 ROW6 «e490730
35 & RowW? «e490730
35 » ROWE =1490730
S s ROW9 =¢490730
53 ROW{ 1188022
S5 ReW3 «1e37497
S ROWS =1485250
$s RONG «o 435250
s RoW? 1435250
$Ss ReNWS = 485250
$Ss ROW9 0488290
e Row} 12373982
36 RBW3 2489974
356 ROWS =4539040
3356 ROW6 «e5990&0
B 6 ROW? »¢599040
86 ROWS =+599040
56 ROW9 ©4599040
87 ROW1 we24{133
s 7 REW3 2453422
s 7 RewS «+590880
37 ROWS =9590380
387 ROW? =+530880
s RowS =+590380
s ROWS *¢530840
kL3] ROW{ es268547
S s ROW3 2458870
58 ROWS *¢582960
35 8 ROW6 »+582960
s ROW? «+582960
s s RONS 582940
3§ 8 ROWS =¢582960
9 ROWY = 247829
359 RON3 «2060313
39 RONWS «:575230
359 ROWS 575230
35 9 ROW? ©575230

Appendix C

79

80

35 9 RoW8 575230
35 9 ROW9 -s575230
3510 ROW1 *0301728
3s10 RoW3 «3+14933
3510 ROWS =1680370
35{0 ROW6 «1680370
3540 ROW? «1680370
3510 ROWS »¢680370
3s10 ROWY 0680370
3511 RoW] *+308455
3511 ROW3 3421898
3511 ROWS 0669880
3511 Rewb 0669380
3511 RpW? «e669880
3544 ROWS »0669880
3514 ROWS 0669880
3sie2 LELT =+31118%
3512 ROW3 «3.28863
3s12 ROWS «e659700
3s12 ROWE *4639700
3siz ROW? «+659700
3512 ROWS =659700
3812 ROWY 1659700
3513 ROWL *1315908
3513 ROW3 *3e31828
3513 REWS =:639830
3813 RENG e 649830
3513 ROW7 ws649830
3513 ROWS 6849330
3§13 RON9 1649830
3514 ROWL =0320635
3514 ReW3 3434793
351 ROWS «e6402%0
351a ROWS 640250
351s ROW? 680250
3514 ROWS =0640250
3S14 ROW9 680250
3515 ROMWY =¢270807
3515 ReW3 02854453
3815 ROWS =1526420
3515 ROW6 3528420
3515 ROW? - 1828420
3515 ROW3 526420
3515 ROWI «1528420
3516 ROW{ *1278089
3516 ROW3 *2¢8790%
3516 ROWS «9530120
3516 ROW6 =9520120
3516 ROW? v 520120
3Sis ROWS 520120
3546 ROWY *e520120
S4BOUND 'MARKER' YSEFBRG!
451 ROW2 *e179619
4S5 4 ROWS «1:88670
4S 1 ROWS =e507320
45 § ROW6 »e507320
4S 1 ROW?7 2507320
S 4 ROWS *e502320
a8 ¢ ROWS *¢507320
s 2 ROW2 »s181719
ag 2 ROM =i+90277
A 2 ROWS *+502080
a8 2 ROWS «+502080
AS 2 ROW? «+502080
45 2 RoW8 «+502080
&S 2 ROWI =+502080
48 3 ROW2 -y 1338720
4$ 3 ROwa «1493084
s 3 ROWS = 0498350
4 3 RBWG =+496350
8 3 RBWT 21496350
84S 3 ROWE «94963%0
a5 3 ROWI »+4953%0
1K) ROW2 0185921
45 & ROWS 1495290
(-} RewWS 4490370
a5 & ROWE =e490370
4 & ROW? =+490370
a5 & ReW8 «e430370
A4S & RowWI =+490370
(181 ROW2 ve188022
48 5 ROWA *1¢97497
45 S5 ROWS =0 485250
4SS ROW6 =2485290
45 5 ROW? 0485250
S S RowWa 0885250
4S 5 ROWS =s 4885250
4S5 6 ROW2 1237982
48 6 ROW& 2049974
& 6 ROWS =¢539040
AS 6 ROW6 =9599040
45 6 RowW7 «9899040
S 6 ROWS «1899080
-3 RS9 «¢599040
s 7 ROW2 «s24{133
¥ 7 ROWA «2453022
¥ 7 ROWS =e590880
S 7 ReW6 «9590880
¥ 7 ROW7 »¢890880

Appendix C

S 7 ROWS =¢590880
4S8 7 ROWS *+530580
4 8 ROW2 0268587
o 8 RBws 2456870
a8 8 ROWS ©0583960
45 8 REWS 2582960
S 8 ROW? «e582960
4S & ROWS =582960
4S8 ROWS =+582940
49 ROW2 we287829
48 9 ROWA 2480318
s 9 HOWS =e575230
45 9 ROW6 575230
4S 9 RaW? =¢57%8230
4 9 ReWS =457%230
4$ 9 ROWY *¢57%5230
4510 RowW2 *9301728
4510 RQw# *3+16933
L3310 ROWS =+680370
4510 ROW6 «680370
4810 RENW7 ©e680370
4sio REWS »e680370
4810 ROWS =0680370
4511 Row2 =0306455
45114 REWs =3e21898
4511 ROWS =2669380
4S31 ROW6 *1669380
4514 ROW? =¢669830
4511 Rows =1689880
4511 ROW9 4669880
a#s12 ROW2 »e311184
4812 RowWé *3028863
4512 RBWS *e659700
asge ROW6 «e659700
4512 ROW? ©0659700
AS12 ROWS =0659700
4512 ROWS *4659700
4813 RowW2 =¢315908
4313 ROW& 331828
4513 ROWS *1649830
4513 REwé 1649830
4513 ROW? 649330
4513 REW8 =e649830
4813 ROW9 =¢6§9330
AS1s ROW2 «4320635
4514 ROW4 3038793
4514 RONS =0640250
4514 ROW6 =1680250
4514 ROW?7 * 1643250
4514 ROWS *0640250
#S14 ROWY 0680250
4515 RoOwW2 «+270807
4515 ROWA 2084453
4515 ROWS =¢526420
4515 RBW6 *e526420
4515 ROW? =e528420
4545 RoW8 *e526420
4518 ROWI *9526420
4516 RBW2 =9278089
4516 ROWA *2¢87301
4516 RBWS 2520130
AS16 RAW6 »9520120
aSie6 ROW? «e520120
11373 ROWS *e520120
4516 ROWY 520120
S$SBOUND 'MARKER! 'SEPBRG?
85 1 ROWS *2¢05043
5S 1 Rowé +18343
§5 1 ROW? «0ld

55 1 ROWS «s0i824
55 2 ROWS 2469876
S 2 ROW6 +2%853
5% 2 RBW? +02352
55 2 RBW3 *e01993
§S 3 ROWS *2453943
5S$ 3 ROW6 025816
55 3 ROWY «02399
55 3 ROWE =e018486
55 & ROWS 2439774
5S & REW6 *25981
S5 & ROW7 02847
85 & ROWE *e01899
5SS 5 ROWS =2¢30899
$$ 5 ROW6 1286

88 5 ROW7 102854
LI ROWS *e01578
LI ROWS 218475
5S 6 ROW6 26318
55 6 ROW? 002945
55 6 RONS *s0i403
55 7 ROWS 2408143
85 7 ROW6 286486
88 7 ROW? +03093
55 7 ROWS «e0i257
55 8 ROWS *1498793
55 8 ROW6 226656
55 8 ROW? 003242
58 8 ROWE =e0f110

Appendix C

81

88 9 ROWS 1487169
8S 9 ROW6 026827
85 9 Rew? 003390
56 9 ROWS *e00964
5510 ROWS 179295
5510 REW6 26999
5810 ROW7 +03839
53810 RBW8 ©¢00818
5511 ROWS 1478983
5514 ROWE 27843
5311 ROW? +03753
5511 ROWS *e00632
§S12 ROWS 188237
sSi2 ROW6 027351
5812 ROwW? +03840
5512 ROWA 000523
5513 ROWS «1+59032
5513 ROWS 027527
5§13 ROW? 203990
5513 ROW8 00377
551s RONS =§¢83279
5514 ROW6 127705
8518 ROWY *04140
5514 ROWB «»00231
5515 ROWS «§eb7912
5545 ROW6 127884
5515 ROW? 104290
551§ ROWSR 900084
8S16 ROWS «1.53898
5516 RoWé «28064
8616 Rew? LTSS
sSi6 ROW; 100062
5§17 RBWS eleddnbs
8517 ROW& 12873
8517 RoW? 008622
5817 ROWE «00212
518 ROWS =1+99022
8518 ROWS w2717
5518 ROW7 07174
[13F) ROWS +0038%
5519 REWS =1+39986
5519 ROM6 +43134
8319 ROW? +0751%
5819 ROWE 200918
5520 ROWS =1¢81706
5520 ROW6 43854
£S20 ROW7 »07858
8520 RoMS 001247
8821 ROWS =1+18856
8521 ROW6 *29780
5521 ROW7 «08524
8521 ROWS +01033
5522 ROWS vie69263
85522 ROWG 48278
§$22 ROW7 «08435%
ss22 RoWS +0{800
5523 RowS *1462601
8823 ROW6 ad21d
5523 ROW? +08781
5523 ROW8 002129
5524 RONWS =1¢5841s
5524 ROW6 045152
5524 ROW? 09128
$524 ROWS +02459
8525 ROWS =11523%9
8525 ROW6 vab6i2s
525 ROW? 209588
8828 ROWS 002823
8526 ROWS =1¢92509
882¢ ROW6 41809
$526 RBW? 013186
5526 ROWS v04239
5527 ROWS «18377%6
5527 ROW6 262327
5527 ROW? «13312
5§27 ROWS 204828
5528 ROWS «le77235
8528 R8W6 063708
5528 ROW? +14570
5528 REWS 203468
5529 ROWS *1.68293
5829 REW6 064018
5829 ROW? +15083
5529 Rews +06015%
5530 ROWS =1+61851
8830 ROWS 64877
5530 Row? 15722
5530 REWS +06609
8834 ROWS »1¢56410
5531 ROW6 +66326
8531 ROW? *16809
3534 ReW8 07289
5532 28RS =1:88548
8532 RBWS 083068
8532 ROW7 121377
5532 ROWS +09852
8533 ROWS «2+12703
5533 ROW6 1002643

82

Appendix C

5533 ROW? 027163
5533 ROWS 013140
5S34 ROWS 2416081
5534 ROWE 1e12664
‘8834 ROW? 030864
8534 ROWS 015647
8835 RONS w2ei?01?
5535 ROW6 1022682
%835 ROW? 034774
§535 ROWS 018400
5536 ROWS «2+0%030
8536 RaW6 1025659
5536 ROW? +36806
5536 ROWS «20223
8537 ROWS5 wle94125
5537 ROW6 1.2876¢
5537 ROW? 038873
8837 Rows 022063
8538 RONWS {88153
5538 ROW6 1431989
5538 ROW? 040978
5538 ROWS 23922
5539 ROWS *1e24993
5839 ROW6 1435337
5539 ROW? 43122
5539 ROWS 258¢2
5540 ROWS =] 166542
5540 ROW6 1038819
8540 RoWY +48310
5S40 ROWS 27704
5541 ROWS 2438315
5544 ROW6 2¢1502a
5S4y ROW? v72168
5544 ROWA 45176
8542 ROWS *2419504
542 RoW6 2023763
5542 ROW? 077364
5542 ReW3 *49603
S$S43 RAWS «2+058215
5543 ROW6 2033044
5543 ROW? 082749
5543 REWa 54131
5S44 RBWS *1083949
[1LYY ROWS 2033320
5Sas Kew? 84790
(17 ROWS 056394
S6BOUND 'MARKER' 1SE PORG!
63 1 RewWl 073245
65 ROWS 4400720
6S 2 ROWY .

65 2 R@WS 3499174
65 3 RoW1 "e89
6% 3 REWS 4404316
65 & Rewy)

6S & ROWS 3474265
5 s ROW1 {e0” -~
65 5 RBWS 3481205
85 6 RoW {e1

65 6 ROWS 3083964
6$ 7 ROWY 101

65 7 ROWS 3452757
6S 8 ROW] {e3

6S 8 REWS 3483016
85 9 ROWY o8~
65 9 RONS 3477886
6510 ROWY 108"
6510 ROWS 3e71418
6511 ROWY {e6”
6511 ROWS 368020
(113 RBWY o7
6512 REWS 3456007
6513 ROW{ 1.8
6513 ROWS 3e47621
6514 ROWY 9
6514 ROWS 3439086
6515 REW! 0
6515 ROWS 3.30424
6516 ROwWY ol
6516 REWS 3421847
6517 ROWY 2"
65817 RBWS 3013398
6518 RewW1 .

6518 ROWS 3+0512¢
6519 RewW1 of
6519 ROWS 2497069
6520 Rewi 2457
6520 ROWS 2089251
6521 RewW1 5
6521 ROWS 271184
6522 RowW1 2077
6522 ROWS 2471076
6523 REW1 207
6523 ROWS 2462592
6524 ROWL 248
6524 ROWS 2452883
6525 RBwW] 208
6525 ROWS 2038965
6526 REWl 248

Appendix C

83

6526 ROWS 2426499
6527 ROW1 3.0
&527 ROWS 2430245
6528 ROWL 0
4528 ROWS 2418651
6529 ROW! .
6529 ROWS 2421698
6530 ROWL 3e2
6530 ROWS 2.10928
6531 ROWL 3
6531 ROWS 2407295
6532 RowW} 342
6532 ROWS je9198s
6533 ROWL 340832
6533 RBWS 1478590
S7BBUND 'MARKER! 'SEPBRG!
751 Row2 19973
751 ROW6 197803
e ROW2 247
75 2 Row6 2062592
7$ 3 ROW2 2+8
753 ROW6 2052883
76 & ROW2 2e8
7S« ROWE 2438965
7% 8 RowW2 2¢8
75 ROWS 2026499
75 6 ROWZ «0
75 6 ROWG 2430245
7S 7 RaW2 *0
7% 7 RoWs 2418651
75 8 RowW2 32
7S 8 ROWE 2021698
79 RawW2 3Je2
%9 ROWS 2010928
7510 ROW2 o3
7810 RBWS 2407295
7511 ROW2 32
7511 ROWG 1091984
7512 ROWZ 3.0832
7512 REWS 175590
7513 ROW2 248308
7513 REWS 1458692
7514 ROW2 34116
751a Rowé ie6é182
7815 ROW2 3.0
7515 RBW6 1454204
7516 RBW2 3e0
7516 RowWs 1448915
7517 ROw2 3.0
7517 ROW6 1433978
7518 ROW2 3,07
7518 ROWG 1039358
7519 ROW2 3.0
7519 ROW6 135025
7820 RoW2 3.0
7520 RONS 1430953
7823 ROwW2 30
7821 ROW6 {.27119
7522 ROW2 340
7522 RBMWG 1423508
7523 ROW2 30
7523 ROWG 1+20089
7524 ROW2 3.0 °
7524 ROWE 1e16857
7825 Rew2 340
7628 ROWS 141379
7526 RoW2 340
7526 RBW6 {10890
7827 RowW2 3.0
7827 ROwWs i.08128
7528 ROW2 3.0
7528 ROW6 108502
7829 ROW2 3.0
7829 ROWS 1+03000
7530 Row2 o0
7S30 ROW6 1400613
7831 ROwg 1682
753 ROWé +58393
S8BBUND 'MARKER!' 1SEPARG!
81 ROW3 106936
85 1 RoW? 1+00549
85 2 RoW3 3.0832
8s 2 RGW7 1475590
8s 3 ROW3 248308
8S 3 ROW7 158692
85 & ROW3 3ei1le
8S & ROW?7 1.68182
[ROW3 o0
8s 5 ROW? 1058204
8 6 ROWI 340
85 6 ROW? 1148915
88 7 ROW3 [+}
85 7 ROWY {83978
85 8 RowW3 .
85 8 REW7 1+39358
85 9 R&W3 [
85 9 ROW? 1+3502%
8510 ROW3 30
8sio ROW? 1430953
8s11 ROW3 3.0

84 Appendix C

8511 RuwW? 1427119

8842 ROW3 3.0
8512 ROW7 123505
8513 ROW3 3407
8513 ROW? 1.20089
8514 RBW3 3007
851a ReW7 1016857
8548 Rew3 3.0
8515 RoW? 1e1379¢
8Sie ROW3 3407
8516 ROW7 1010890
8517 ROW3 o0
8517 ROW? {e08128
85is RAW3 346
3518 ROW? 105502
8si9 ROW3 340
8545 ROW? 1403
8520 Row3 3.0
8520 ROW? 100613
8521 ROW3 34073
as21 RoW7 100585
$986UND 'MARKER! 'SEPBRG!
95 1 LLTT Jelle
95 1 ROWS l.68582
9 2 ROWS 3.0
8S 2 REW8 1¢54204
95 3 ROWS 340
95 3 REWS 148915
95 & ROwWs 3007
95 & RowW8 143978
9s 5 RoWs 3.0
9 s ROWS 1439358
95 6 ROWS 3.0
95 & ROWS {35025
95 7 ROW& 3.0
95 7 ROWS 1430953
95 8 RoW&]
95 8 ROWS le27119
95 9 RoWs 340
95 9 ROWS 1423505
9510 ReWs 3407
9s10 REWS 1420049
9511 ROWe 340
9511 ROWS ie168%7
9512 ROW4 3407
9512 ROWE 1013798
9S13 ROWS 3.0
9513 ROWS 110890
9514 RoWs 300
9514 Row8 1408128
9515 HOWs 3¢0
9515 ROWS 1405502
9516 ROW& 3.0
9516 ReWs 1+03
9517 Rows 340
‘9817 ROWS 1000613
9518 ROWH 3.079°
9518 Row8 1400885
9519 REBWS 857
9s19 ROWS +14090
S10BOUND 'MARKER! 'SEPBRG!
15 1 ROW2 51
15 1 ROWS 027814
1§ 2 ROW2 =316
1S 2 ROWI 1066182
1§ 3 ROW2 3,07
1§ 3 RAWI 1054204
1S » ROW2 *3.0°
1S & REWI ie48915
1§ s ROW2 «300°
1§ 5 ROWI 1083978
15 6 Rewe 340
1S 6 REWI 1039358
1§ 7 Rawz 340"
18 7 ROWI $e35025
16 8 ROW2 340
15 8 ROWY {+30953
18 9 ROW2 3.0
15 9 ROWS {e27119
1810 ROW2 ©3¢0
1$10 ROw9 1023508
isiy ROW2 =3¢0
1511 ROWI 1+20089
1582 ROW2 340
1512 ROWI 1036857
1613 RON2 v3¢0
1513 RGWY 1413796
1518 ROWZ =340
1514 ROWI 1410896
154s ROW2 «2eil9
1515 ROWY +78843
SEPEND 'MARKER! 1SEPEND'
RHS
1RHS Row] 3040166
1RHS Rowe 44095945
1RHg ROW3 2744145
1RHS ROW4 99+8369

Appendix C 85

1RHS ROWS +0052

1RHS ROWS 3180104
1RHS ROW7 8e46602
1RNS REWS sel3771
1RHS ROWS +001
BUUNDS
UP BND U} 1.
UP BND e i,
uP 8RO u3 e
UP BND Uk ie
uP BND us i
wP BND 35 1 1.
uP BRD 35 2 1.
UP BND 3 3 ie
UP BAND 3s & ie
UP BND 3§ 5 i,
P BND 3s 6 1.
UP BND 35 7 {,
UP BRD 3 8 ie
uP BND 59 e
UP BND 3s10 1.
uP BND 3511 1o
UP BND 3st2 1
UP BND 3si3 e
LUP BND 3sie i,
uP BND 3515 1e
up BND 3sts i.
uP BRD 8 § i,
UP BND s 2 ie
UP BND &s 3 ie
uP BND AS & ie
uP BRD 4s 5 {s
uP BND s 6 e
uP BND 45 7 1o
LP BND 4s 8 i.
UP BND 45 9 i.
VP BND 4510 {e
UP BND 481y 1,
e BND asiz 1.
BND asi3 ie
WP BND as1a 1.
UP BND 4515 1.
UP BND 4516 e
UP BND 8s 1 s
uP BND 55 2 e
UP BND 55 3 i,
P BND 55 4 ie
UP BND 5s 5 ie
VP BND 5S 6 is
UP BND 5s 7 i.
UP BND 55 8 {¢
uP BRD Ss 9 1,
VP BRD 5510 i,
P 8hp 5si1 i,
WP BND 5512 {.
uP BRD 5513 1.
LP BND 5514 {.
UP BND 5315 N
UP BRD 5516 1
uP BND 8547 1e
P BRD 5518 e
LP BNC 5319 1.
UP BMC 5520 1e
WP BND 5521 {.
UP BND 5522 e
UP BND 9523 1.
UP BAND 5524 1
uP BND 5525 1,
UP BND 5526 1,
P BND 5527 1.
yP BiND 5528 1.
uP BND 6529 e
UP BND 8530 I
UP BND 5931 i,
yP BND 5632 {e
uP BND 5533 i,
WP BND 5534 1,
LP BND 5535 1o
uP BND 5536 s
uP BAD 5537 .
uP BRD 5538 1.
uP BRND 5539 i
UP BND 85540 .
uP BND 5541 1.
UP BND 5542 1.
uP BND 5543 ie
uP BND 8544 e
UP BND 6s 1 i,
UP BAND 6S 2 {e
UP BND 6s 3 i
UP BND 6S & 1.
P BAD 6S 5 1.
UP BND 6S 6 i
UP BND 65 7 i,
UP BND 65 8 ie
vP 8ND 6s 9 i,
UP BND 6310 e
P BND 6S11 f

86 Appendix C

UP BND 6512 i,
P BND 6513 {.
UP BND 6514 i.
UP 8AD 6515 {o
UP BND 6516 .
VP BND 6517 .
UP BND 63818 .
UP BND 6519 .
UP BND 6S20 .
UP BND 6521 1.
P BRD 6s22 1.
UP BND 6523 i,
uP BND 6824 i,
P BND 6525 .
UP BND 6S26 D
UP BND 6527 '
uP BND 6528 .
P BND 6529 .
uP BND 6530 .
UP BAD 6831 1.
UP BND 6332 .
UP BAND 6533 .
up 8Ne s 1 o
UP BND s 2 i,
P BND 7s 3 i.
VP BRD 7S & 1o
UP BNC 75 ie
VP 8ND 75 6 {e
WP BND 7S 7 i.
UP BND 7S 8 1.
VP BND 78 9 i,
UP BND 7810 1,
WP BAD 7511 1.
UP BND 7812 s
LUP BRD 7513 I
uP BND 7544 i,
UP BAD 7815 1.
uP BND 7816 i.
VP BRD 7517 .
UP BND 7sia N
UP BND 7519 .
UP BAND 7820 .
uUP BND 7821 .
UP BND 7822 ¢
WP BAC 7823 .
VP BND 7524 .
UP BND 7528 .
UP BND 7s26 .
UP BND 7827 .
uP BND 7528 .
UP BAD 7829 ie
P BND 7s30 fo
UP BND 783t i,
UP BND 8s 1 i,
UP BND 3s 2 1.
UP BND 8s 3 ie
UP BAD 8s & 1,
UP BND 8§ 5 i,
UP BAD 8s 6 i
uP BND 83 7 i,
UP BND 8s 38 1.
uP BND 8s 9 1,
UP BND 8s10 1,
UP BAND 8si} 1o
UPF BND 8s12 ie
UP BARC 8313 i
UP BND asis i
uP 8D 8515 {e
P BRD 8516 1.
WP BND 8s17 1e
UP BND 8518 e
UP BND 8s19 1.
UP BND 8520 1,
P BRND 8s21 1,
uP 8ND 95 1 1.
UP BAD 95 2 1)
uP BND 9s 3 i
UP BAC 9S & e
uP 8ND 95 S i.
uP 8ND 9s 6 1e
yP BND 9s 7 1.
UP BND 9s 8 i
yP BND 9s 9 i.
uP BND 9s10 1o
uP BND 9s11 fe
yP BND 9si2 1.
uP BANO 9s13 e
UP BND 9514 1o
UP 8RD 9515 1.
UP BAD 9816 1o
uP BND 9s17? 1,
WP BND 9513 i,
UP BND 9s19 1,
UP BND 1S 1 i,
UP BND is 2 1e
P BND 1s 3 1.
UP BND 15 & i,
UP BND 15 5 {.

Appendix C

87

uP BND 1s 6

L]
UP BND is 7 i,
uP BND 1s 8 1.
uP BND 1s 9 1.
UP BND 1si0 i,
UP BNC isiy 1,
UP BAND 1812 i,
uP BND 1513 {.
UP B8MD 1514 i,
WP BND 1s1S i
ENDATA

113137 FEB 12,'69 IDe00O01

JOB 326, SpHMD

LIMIT (TIME,9054(L6,1000)5(U8,1000)5 (06,1000}

ASSIGN F1106, (DEVICE)CPAOY)

ASSIGN Fi1, (FILE2CLANG) 2 (BIN) 2 (WRITEsALL)» (CONSEC), (SEQUEN),)
(BUTIN)» (RECL230000), (READSALL)

ASSIGN F325 (FILESUTILI 12 (BIN) 2 (WRITEsALL) # (KEYED) s (DIRECT)3
(GUTIN), (RECL230000), (READ2ALL)

ASSIGN F334(FILE,UTIL2) 2 (BIN) s (WRITESALL)2{KEYED) s (DIRECT)4}
(OUTIN), (RECL»30000), (READsALL)

ASSIGN Fla,(FILE/MTRXIO(BINY, (WRITESALL) 2 (DIRECT IS (KEYED) s}
(BUTIN), (RECL230000) s (READSALL)

ASSIGN Fi8, (FILEs1VSE)a(BINY, (WRITESALL) s (DIRECT) s (KEYED) 4
{BUTIN); (RECL230000), (READsALL)

RUN (LMNsFMPS)

12FEB6S Oe Os 1s
INTERNAL STATEMENT NUMBEK © TIME = 11337
4
c DEFINE HEACING AND ENTER SEPERABLE PROGRAMMING MODE
4
1 e TITLE NONeLINEAR PROBLEM N8O 6
2 v c CALL ENTER(SEP)
c SPECIFY FOUR SYMBOLIC UNITS(NORKING FILES) BN RAD
4
3 e CALL DEVICE{'FILEL',DISCy'B")
§ e CALL DLVICE(TFILE2Y,DISCH'C")
S e cALL DEVICE(YFILE3,DISC,'D")
6 se CALL DEVICE(YFILES',DISCL'E")
4
C ATTACH THE FBUR STANDARD FMPS FILES T® THE FOUR
4 PREVIOUSLY DEF INED SYMBOLIC UNITS(RAD)e
c
7 *» CALL ATTACH(MATRIXsTFILEL")
8 e CALL ATTACH(INVERSE,'FILE2")
9 »s CALL ATTACH(UTIL1s'FILEIY)
10 #» CALL ATTACH(UTIL2,TFILES")
4
C INITIALIZE INTERRUPT VARIABLES
4
11 e ASSIGN 100 T8 KMAJER
12 #» ASSIGN 200 T8 KIOER
13 »» ASSIGN 300 T8 KNFS
14 e ASSIoN 400 TO KUBS
15 =& ASSIGN 500 T8 XINV
C
16 «» ADATA s 'NLPSTCOL!
c
C LOAD INPUT MATRIX FRBM CARDS, USING RECERD !NLPSTDO1!
C
17 »s CALL INPUTY
C
4 IDENTIFY RIGHT=HAND=SIDE CBLUMN AND COST ROW TO BE USED
4
18 »e ABuJ & 18BUT '
19 s ARHS & '1RHS '
4
4 SET T® INVERT NO LESS FREQUENTLY THAN AT INTERVALS OF
4 50 ITERATIONS(NOTE: AUTOMATIC INVERT 8N TIME 1S BY DEFAULT
C IN BPERATIONe) .
C
C anass
C NBTE: T8 TURN OFF THi AUTEMATIC INVERT BN TIME, THE FOLLBWING
C STATEMENT SHOULD BE USED.
[4 INVTIME » =}
C sesee
12FEB69 Os Ov 20
C
20 «» {PREQ] » S50
c
C INJTIALIZE ITERATION LBGGING FREQUENCY T8 PRINT EVERY ITERATION
C
21 o LGP ¢ 3
c
4 SPECIFY MININIZATION
4
22 e FOBUNY s 1o
4
c SOLVE SEPERABLE MATRIX
4

88 Appendix C

23 oo CALL OPTIMIZE

[
g DISPLAY PROBLEM SOLUTIEN
24 s CALL SOLUTION
25 o» c sTap
4 ENTER WERE FOR MAJOR ERROR CONDITIENS
4
26 #s 100 CALL CBNDITISN
27 ee step
d
[« ENTER WERE FOR 1/8 ERRBR CONDITISN
[«
28 s» 200 CALL CONDITION
29 os STOP
Cc
E ENTER HERE FOR No FEASIBLE SOGLUTION CONOITIGN
30 e 300 CALL CONCITION
4
4 ENTER ERE FOR UNBOUNDEC SBLUTIBN CONDITION
4
31 ss 400 CALL S6LUTION
32 STOP
4
[4 ENTER WERE FOR INVERSION INTERRUPY CONDITISN
c
33 s S00 CALL INVERT
34 e RETURN
38 e ENO
INTERNAL STATEMENT NUMBER 0 TIME s 11337
12FEB69 Oe 1e 1e
INTERNAL STATEMENT NyMBER 1 TIME » 11337
INTERNAL STATEMENT NUMBER 2 TIME » 11137
INTERNAL STATEMENY NUMBER 3 TIME » 11837
INTERNAL STATEMENT NUMBER & TIME o 11337
INTERNAL STATEMENY NUMBER 5 TIME o 11337
INTERNAL STATEMENT NUMBER 6 TIME o 11237
INTERNAL STATEMEN? NUMBER 7 TIME = $11837
INTERNAL STATEMENY NUMBER 8 TIME & 31337
INTERNAL STATEMENT NUMBER 9 TIME = 11137
INTERNAL STATEMENT NUMBER 10 TIME » 11337
INTERNAL STATEMENT NUMBER {1 TIME & 11337
INTERNAL STATEMENT NUMBER {2 TIME o 11137
INTERNAL STATEMENT NUMBER {3 TIME & 11337
INTERNAL STATEMENT NUMBER {4 TIME w §1137
INTERNAL STATEMENT NUMBER [5 TIME = 11:37
INTERNAL STATEMENT NUMBER {6 TIME » 11137
INTERNAL STATEMENT NUMBER 17 TIME » 31837
BUFFER SIZES (BYTES) AREes MATRIX s 7160 INVERSE = 10240
MATRIX STATISTICS
ROWG oo YT 10
COLUPN oo 213
RHSoseoe . 1
DENSITYeoeos 30489
ELEMENTS 000 638
LARGESTeos0s 002000000403
SMALLESTseee 00620000003
MAJBR ERRORS 0
MINGR ERRORS 0
SETSeescrone 10
INTERNAL ‘STATEMENT NUMBER 18 TIME = 13137
INTERNAL STATEMENT NUMBER {9 TIME = 31338
INTERNAL STATEMENT NUMBER 20 TIME o 113138
INTERNAL STATEMENT NyMBER 21 TIME = 11138
INTERNAL STATEMENY NUMBER 22 TIME « 11338
INTERNAL STATEMENT NUMBER 23 TIME » 11:38
NEGATIVE OJ COUNT » 7 SELECTED | VARIABLES BEST Dy = «0¢2000000403
ITERy SUM 6F INF NINF OBJECT VALUE veIN MOVE REDUCED COST ACTIVITY VeBUT MBVE plver
1 0v246438420403 9 0+00000000D+00 11 LeB 04000000000+00 0499184500400 5 Bel 0¢200000000403
NEGATIVE DJ COUNT = 6 SELECTED 2 VARIABLES BEST Dy s «0¢300000D+02
ITER: SUM OF INF NINF BBJECT VALUE VveIN MOVE REDYCED COST ACTIVITY VeSUT MBVE piver
0+146601520403 8 =0¢900000000+01 13 LeU <0.300000000+01 0,10000000D+01 NANE
3 0116601520403 & =0+30000000D+01 133 L=y 0,000000000+00 0+180060000D+01 NenE
NEGATIVE Dy COUNT s 6 SELECTED & VARIABLES BEST OJ » «0+1000000+02
ITERs SUM oF INF NINF BBJECT VALUE V<IN MavE REDUCED COST ACTIVITY VeBUT MBVE plver
00112626190403 8 *0+900514600401 14 L-B =0¢310000000+01 0+156000000-02 2 B=L 0+10000000D4+02
12FEB69 NonewLINEAR PROBLEM NB 6 De 1 2e
S 0+112609%90403 7 =0¢11805146D+02 16 L=y <=0+280000000+01 0100000000401 NENE
6 0+1026095904+03 7 =0s11805146D402 134 Ley 0+000000000¢00 0100000000401 NaNE
7 00972836700402 7 =0¢118048510+02 99 (*8 0:227059500400 0¢129758420-02 6 Bel 0+400720000+¢01
8 00972784700+02 6 =0011804851D482 168 Ley 00000000000+00 0.100000000+01 NeNE
5 0+945793800+02 6 *0011804851D¢02 187 LeU 0¢000000000+00 0100000000401 NanE
NEGATIVE DJ COUNT » 5 SELECTED 5 VARJABLES BEST Dy » «0+1000000+02
ITERy SUM OF INF NINF BBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY Ve8UT MBVE piver

10 0+92917560D+02 6

*041470485{De02

17 Ley

=0+290000000+01

0¢100000000+01 NANE

Appendix C

89

11 0i829175600+02 6 =00147048510402 135 Ly 0+000000000+00 0100000000401 NONE
12 0+775887300+02 6 =0+147048510402 166 L=y 0+000000000+00 0100000000401 NONE
13 0727796300402 6 =00147048510+02 188 L=U 0.000000000+00 0.100000000+01 NoNE
1% 0+712375900+02 6 =00147000000402 5% LeB 0+116183270+00 04417560370-01 14 BeL 0037478475D=01
NEGATIVE DJ COUNT » 6 SELECTED & VARIABLES BEST DJ = =0+8000000402
ITERT SUM OF INF NINF~ OBJECT VALUE VSIN MOVE REDUCED COST ACTIVITY VedUT MOVE piver
15 0.712298990+02 6 =00199386450402 18 (=B =00240000000+02 0+21827687D+00 3 peL 0+80000000D+02
16 0537677430402 5 =0¢198309040+02 13 ye8 0900000000401 011971174001 5% BeU 0+300453%60402
17 04535912500+02 5 <0+198309080402 167 L~y 00000000000+00 0¢10000000D+D1 NeNE
18 0+491935300+02 5 «00189909040s02 {36 L=U 0.840000000+00 0100000000401 Nene
19 0+4680388004+02 5 «00189909080402 189 =8 0.000000000+00 0+637338750+00 9 BeL 0¢148915000401
NEGATIVE DJ COUNT » 4 SELECTED % VARIABLES BEST Dy ® =0¢4777820+01
ITER: SuM SF [NF NINMF® BBYECT VALUE VeIN MOVE REDUCED COSY ACTIVITY VeBUT MBVE pIveT
20 0+4585%7900402 4 *0¢18990904D+02 168 L=U 0+000000000+00 0100000000401 NONE
21 0+410769700+02 a «001815090%D402 137 Lsy 0+840000000+00 0415000000D+01 NenE
22 0+338119800+02 4 =0+18043890D+02 55 LeB 0e¢14798663D+00 0¢723135810+00 99 Eey =0e¢67347774D400
23 0+386094460+02 4 0s180848400+02 207 L=B =0,+153000000+00 0¢359531170-02 10 B=L 0027814000D+00
NEGATIVE pJ CBUNT = 5 SELECTED 5 VARIABLES BEST DJ v =0¢454204D+01
ITERe SuM 8F INF NINF BBJECT YALUE VeIN MOVE REDUCED C8ST ACTIVITY VeBUT MOVF piver
2% 0386084660402 3 =0e¢180443400402 169 LeU 0+000000000+00 0¢100000000+01 NENE
25 00340664260402 3 «0+17184440D+02 138 L=y 0+300000000+00 0100000000401 NenE
26 0031763976D402 3 =04170995150+02 100 LeB 0424000000040 0.137183040400 55 BsU =0e147910150+01
NEGATIVE DJ COUNT = 3 SELECTED 3 VARIABLES BEST DJ s «004439150+01
ITERY SUM BF INF NINF 8BJECT VALUE VeIN MSVE REDUCED C8SY ACTIVITY VeBUT MOVE pIvey
27 0+316264400402 3 *01170995180+02 1§70 L=B 0¢00000000D+00 0+600563050+00 3 BelL 0s148915000+0¢
28 0+289904180402 2 *0¢16199516D+02 139 Ley 0,200000000+00 0,100000000+01 Nent
29 0+268039080+02 2 »0¢160468350+02 86 Lol 001%52681090+00 041000000004D1 NeNE
NEGATIVE DJ COUNT » S SELECTED 5 VARIABLES BEST DJ s «0¢2216980+01
ITERe SUM oF INF NINF© @BJECT VALUE VveIN MOVE REDUCED CBST ACTIVITY Ve=8UT MBVE plvet
37 0e265960920402 2 »0+150868350+02 140 LeU 0+960000000+00 0¢100000000+01 NeNE
31 0e243751120+02 2 =0¢152520590+02 37 LeB =0030245146D+00 0+53428233D400 207 BeU =0+182397350404
32 0+240979330402 2 =0+18226327D+02 57 LeB 0+14416209D+00 0¢178493080+00 100 BeU =00600675390400
SEP VARe 169 REJECTED
SEP VARe 171 REJECTED
NEGATIVE DJ COUNT 5 SELECTED 5 VARIABLES BEST DJ » =0.210928D+01
L2FEB69 None| INEAR PROBLEM N8 & Oe {e 3e
ITERe SUM OF INF NINF BBJECT VALUE V<IN MOVE REDUCED COST ACTIVITY VegUT MBYE pIvey
33 0+240610770+02 2 *0¢14266327D402 141 ey 0¢960000000+00 0¢100000000+01 NoNE
3% 0+21954797D+02 2 =Qe3#415506D+02 208 (-8B ~0,311131250+01 0+134237230400 189 B=U =0411080346D+01
35 04217846790+02 2 =0¢3142615100402 101 (B 00286319220+00 0537889290400 57 Bel =0+17003717D+01
NEGATIVE Oy COUNT. » 3 SELECTED 3 VARIABLES BEST DJ ¢ =04207295D40%
ITERs Sum oF INF NINF ' BBJECT VALUE V<IN MOVE REDUCED COST ACTIVITY VeaUT MBVE rlvet
36 0+2187160%0+02 2 *0¢1410§6390+02 142 LeB 0+990000000+00 0¢156148534D+00 18 BeL 00412500000-0%
37 0+21234854D+02 2 =00141001460+02 190 Lep 00929619730-01 015728625001 37 Bey =0.283801i%0+01
38 0211821820402 2 =00139782450002 58 Le8 0+152291490+400 04800485220+00 101 BeU «00570330120+00
NEGATIVE DJ COUNY s 7 SELECTED 7 VARIABLES BEST DJ s =0¢6281670+01
ITERe SyM OF INF NINF OBJECT VALUE V=IN MOVE REDUCED COST ACTIVITY v=8UT MBVE piver
39 0,210151250402 2 =00131904220¢02 17 YsB 0¢29000000D0401 0027166318000 1¥2 BeU 0+30303030D+01
40 0:193086280+02 2 =0+13294060D402 38 LeR «D0¢32871218D+00 0+318190186¢00 170 Bel =0.341311590400
41 0+191609830+02 2 =0¢132537020402 102 LwB 0+240458590+00 00167840570+00 58 BeU *0+16011816D+01
NEGATIVE DJ COUNT » 2 SELECTED 2 VARJABLES BEBT Dy » #0+1919840401
ITERe SUM OF INF NINF BBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY VeOUT MBVE pIver
42 01190971400+02 2 =0012325702D+02 143 LeU 0¢328000000+00 0100000000401 NONE
43 0e171773000402 2 =0¢1218723%0402 59 LeU 0¢138466270+00 0+10000000D+01 NenE
NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST Dy » »041755500+01
ITERs SUM OF INF NINF GBJECT VALUE v=IN MBVE REDUCED COST ACTIVITY Ve0UT MOVE pivey
A% 0016943570D+02 2 =0¢113018070402 144 LeU 00825428000+00 00¢100000000+01 NeNnE
45 0:1531876700+02 2 =09512436590+02 60 [»8 0013016288D+00 0¢486732390¢00 102 Bel «0¢55639988D+00
NEGATIVE DJ COUNT o 4 SELECTED % VARIABLES BEST OJ » «0¢1566920+01
ITERe SUM oF INF MIRF BBJECT VALUE Ve=IN MOVE REDUCED CBST ACTIVITY VeBUT MOVE plveT
46 01150831660402 2 =0¢108082450+02 145 Ls8 04820932000400 0+530390380+00 17 BeL 0+28308000D+00
a7 0142520870402 2 »00107175750402 103 L=8 0.300000000+00 0¢302233710+00 80 3=y =0+183059530+01
NEGATIVE DJ COUNT s 6 SELECTED & VARIABLES BEST DJ » =01553524D401
ITERs SUM OF INF NINF© OBJECT VALUE VeIN MBVE REDUCED COST ACTIVITY VeBUT MBVE plvet
48 0+141014720+02 2 =00103560690+02 16 U=B 0+280000000401 0+129109090+00 135 geyy 0¢353257030+01
43 0+133843200402 2 =00102197710402 61 L=U 00136298260+00 0010000000040 NoNE
NEGATIVE DJ COUNT o 2 SELECTED 2 VARJABLES BEST DJ v #0+1661820+0%
1TERs SUM OF INF NINF BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY V=BUT MBVE piver
80 00131526800+02 2 0334729120401 146 LeU 0s872480000+400 0¢100000000+01 NONE

INTERNAL STATEMENT NUMBER 33

TIME » 113238

7 NON*BASIC SLACKSe CBMPLETELY TRIANGULARIZED 1
0 IN NON<CBMPLETELY TRIANGULAR]ZED PART. OF THESE

MATRIX T8 BE INVERTLD
1200 M§ FER INVERT

INTERNAL STATEMENT NUMBER 34
INTERNAL STATEMENT NUMBER

HAC 10 COLS AND

TINE
23 TIME

= 11138
. 11138

21 ELEMENTS. INVERSE HAS

ROWS AND 9 COLSe
0 WHMERE N8T TRIANGULARIZED AND
7 CBLS AND

0 WERE REJECTED FOR TO8 SMALL A PIVOT.
18 ELEMENTS,

20 Appendix C

12FEB6Y NON=_ INEAR PROBLEM N8 o Qe 1. 4o

NEGATIVE DJ COUNT s 3 SELECTED 3 VARIABLES BEST DJ © «041%6022D+0%
ITERs SUM 6F INF NINF BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY V8, T MBVE PIveTY
81 0:15490860D402 2 =0094797537D403 174 LB «0.788507020+00 0¢167997890400 38 BeyU =0+286763070+0}
52 0011228746002 2 =0+39285761D+01 147 LB 0+840000000+00 0636169750450 7 8oL 04154208300+01
NEGATIVE DJ CBUNT » 4 SELECTED 4 VARIABLES BEST DJ s «0.103422D+01
ITERy SUM BF INF NINF OBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY VeBUT MBVE

piver
83 0¢10236906D+02 1 =0¢893083650+01 39 L«B <0126208076D=02 0+86247508D400 103 BeU =04130205530400
54 0+932491530+01 1 =0+893150550+01 61 UeB <0+191853880-01 0¢348704750=01 39 BeU 0+39438508D+01
SEP VARe (70 REJECTED
SEP VARs 172 REJECTED

NEGATIVE DJ COUNT &« 2 SELECTED 2 VARJABLES BEST DJ * «0+103868D+01
ITERs SyM BF INF NINF BBJECT VALUE velN MOVE REQBUCED CBST ACTIVITY Ve8UT MBVE plver

55 0918033030401 1 *0¢893177060+01 40 (=B <=0¢60144084D=02 O0¢440728170«01 {37 3eU «0¢36130351D+00
NEGATIVE pJ COUNT » & SELECTED 4 VARIABLES BEST pJ & «00277622D401
ITERs SUM GF INF NINF~ BBJECT VALUE veIN MBVE REDUCED COST ACTIVITY Ve8UT MOVE plvar

SE 0913455260401 1 =0e892840770401 143 LeB 0412735461001 0026405516D+00 190 Bel «0:905167060+00
NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST DJ » «0:296864D+01
ITERe SUM OF INF NINF 8BJECT VALUE veIN MOVE REDUCED CBST ACTIVITY VeBUT MBVE plver

S7 0+840147820401 1 *0e832777120¢01 191 L«B 0013618262D=01 0¢#67403800<01 208 Bel +0+343363860400
58 0082627220040 1 <0e893051750+01 103 UeB <«0¢718994800-02 0381982680400 &1 Bal =0s194737760401

NEGATIVE Dy COUNT » 2 SELECTED 2 VARJABLES BEST DJ » 003213070401

ITERS SUM BF INF NINF @BJECY VALUE VeIN MBVE REDUCED COST ACTIVITY VeBUT MBVE plver
S9 0+821247510+01 1 ©00893098130401 209 =B «~0+12514221D=01 0¢37067780001 40 Bey =0:31446%4590401
60 0+20933736D401 1 =0¢854302600+01 60 Yol =0+12044714D+01 0+100000000+01 NoNE

NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST Dy * «0¢1011090+0%
ITERs SUM oF INF NINF 0BJECT VALUE VveIN MOVE REDUCED CBST ACTIVITY VegUT MBVE PIver

61 0:802892620401 1 =0¢894457050+01 41 (=8 =0¢506980320=02 0304647090400 171 BeyU «04337030660+00
NEGATIVE DJ COUNT o O SELECTED O VARJABLES BEST DJ = 040000000400

INTERNAL STATEMENT NUMBER 33 TIME » 31133

8 NON=BASIC SLACKSs COMPLETELY TRIANGULARIZED 1 ROWS AND 9 CoLse
O IN NONeCOMPLETELY TRIANGULARJZED PARTs OF THESE O WHERE N8T TRIANGULARIZED AND O WERE REJECTED FOR T8O SMALL A PlVOBTe
MATRIX YO BE INVERTEC FAD 10 COLS AND 22 ELEMENTSe INVERSE HAS 8 CaLS AND 20 ELEMENTS,

600 M3 FOR INVERY
INTERNAL STATEMENT NUMBER 3& TIME v 11338
INTERNAL STATEMENT NUMBER 23 TIME o 11333

NEGATIVE DJ COUNT e« 1 SELECTED 1 VARIABLES BEST Dy ® «Q¢3000000+01
ITERs SuM oF INF NINF™ 8BJECT VALUE veIN MBVE REDUCED COST ACTIVITY V=8UT MBVE plvet
62 0+772090000+01 1 =00834809580+401 172 (<8 <=0¢145598690-01 0242124600400 41 Bey <=04287128050401

12FEB69 NoNns| INEAR PRBELEM Ng& & O 1. S5e
NEGATIVE DJ COUNT = © SELECTED & VARIABLES BEST DJ s «0¢128957D401 :
ITERs SUM 6F INF NINF B8BJECT VALUE veIN MBVE REDUCED CBSTY ACTIVITY VeBUT MAVE

plver
63 00699452620+01 1 «0¢89483064D+01 42 L=B ~04790205780=02 0:266426280«01 1358 Bey <«0,402269750+400
SEP YAR: 17¢ REJECTED
SEP VARe 173 REJECTED

NEGATIVE DJ COUNT = € SELECTED 2 VARJABLES BEST DJ = «0¢309946D+0%

ITERe SUM OF INF NINF BBJECT VALUE veIN MBVE REDYCED COST AC&IVITY VeBUT MBVE pivey

63 01696016860401 1 =0¢894474380404 189 L8 0+833620920=02 0+404978540+00 82 BeU =0+2%0347890+01
NEGATIVE DJ COUNT » 2 SELECTED 2 VARIABLES BEST Dy s 01272000401
ITERs SUM BF INF NINF BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY VesUT MOVE pivey

65 0570495550401 1 *0¢834407100+01 43 LB 0s18445854D=02 0351712700400 191 Bey «0+424001490+00
66 0:525757530401 1 *0089564202p+01 59 UeB *0¢159851900=01 0¢772534470400 303 Be| =056156861D+00

NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST DJ s «0¢2965760401

ITERe SUM OF INF NINE BBJECT VALUE v=IN MAVE REDYCED COST ACTIVITY VeBUT MBVE pIveT
67 0+518526%560+01 1 =0+895720560401 192 | «B <0¢586743460-02 0¢133861690+00 209 BelU <=0¢833136453D+00
68 00473426330401 1 =04895747760+401 102 y=B <=00330286020-02 082348069001 89 pel «0+173693000+01

NEGATIVE DJ COUNT = 2 SELECTED 2 VARIABLES BEST DJ s «0¢320574D+0%
ITER, SUM 8F INF NINF BBJECT VALUE veIN MOVE REDUCED COST ACTIVITY V=8UT MOVE pIver

69 0+477919590404 1 =00395809450¢01 210 =B <=0¢339256450=01 0181848710-01 172 BeU +0+¢10685788D+04
NEGATIVE DJ CBUNT o O SELECTED O VARIABLES BEST Dy = 0:0000000+00

INTERNAL STATEMENT NUMBER "33 TIME 11:38

8 NON=BAS]C SLACKSe COMPLETELY TRIANGULARIZED 1 RBWS AND 9 CBLS.

O IN NONeCOMPLETELY TRIANGULARIZED PART. OF THESE O WHERE NSBT TRIANGULARIZED AND 0 WERE REJECTED FBR T8B SMALL A PIVOT,
MATRIX T8 BE INVERTED hAD 10 CBLS AND 22 ELEMENTSs INVERSE HAS 8 CALS AND 20 ELEMENTS,

600 MS FOR INVERT
INTERNAL STATEMENT NUMBER 3& TIME = 11138
INTERNAL STATEMENT NuMBER 23 TIME « 11238

NEGATIVE OJ COUNT o 1 SELECTED 1 VARJABLES BEST DJ s =0+3000000+01
ITERe SUM OF INF NINF OBJECT VALUE veIN MOVE REDUCED COST ACTIVITY Ve8UT MBVE plver
70 00472090000+01 1 =0089618127D0+401 173 LeB <=0+307612410°01 0¢12087391D+00 43 Bel <0¢228515100401
NEGATIVE DJ COUNT = & SELECTED 4 VARIABLES BEST DJ » «0e1295230+01
ITERe SUM OF INF NINF BBJECT VALUE V=IN M8VE REDUCED COST ACTIVITY Ve@UT MBVE

pivar
71 0+435827830+01 1 =0+B9618813D+01 AN LeR «0:15141831DeGl 045286126002 143 By =0+A0489519D+00
SEP VARe 172 REJECTED
SEP VARs 174 REJECTED

Appendix C 91

NEGATIVE DJ COUNT « 2@ SELECTED 2 VARIABLES BEST DJ s =003096270401
ITERs SyM OF INF NINF BBJUECT VALUE V-IN MOVE REDUCED CBST ACTIVITY VeBUT MBVE piver
72 (+435241270+0! 1 «0189626454D401 150 L=B =0+924279650-02 0+827150220-01 102 Beu =0¢372351140+00

12FEB4S NONs| INEAR PROBLEM N@ 6 Os 1e 6
NEGATIVE DJ COUNT e 2 SELECTED 2 VARIABLES BEST DJ » ~0s846965)+01
ITERe SuM oF INF NINF 8BJECT VALUE Vv=IN MBVE REDUCED COSY ACTIVITY VeoUT MBVE pivey

T 73 0+40963046D+01 1 «00896268120+01 103 L =B <=0+289698430-03 0012199473000 &4 BeU =00633912790¢01
7% 0:306305150+01 1 =0+896698570+01 68 (eB 00213772130=01 04201408410+00 103 BeL =0+605708210+00

NEGATIVE DJ CBUNT o 2 SELECTED 2 VARJABLES BEST DJ ® «0¢1293790D40%

ITERe SUM BF INF NINF' BBJECT VALUE veIN MBVE REOUCED COST ACTIVITY VeBUT MBVE plver
75 0+305032480+01 1 =0¢897204330+01 4% L8 «=0¢719624780-02 0¢702676490D600 132 Bey <=0¢#23105930+00
76 00214120610+01 1 =0039760298D+01 102 UeB =0+10434214D=01 0+3820%55800+00 88 Bel =0416320572040)

NEGATIVE DJ COUNT « 2 SELECTED 2 VARJABLES BEST DJ ® =0¢2909530+01
ITERy SUM 6F INF NINF OBJECT VALUE veIN MBVE REDUCED COST ACTIVITY VedUT MBVE Pivey
77 0+207994460+01 1 *0e29773365D401 193 [B «0¢128443550-01 0,101731160+00 150 By =0¢939687710400
NEGATIVE OJ COUNT » 2 SELECTED 2 VARIABLES BEST DJ s »0,+3000000+01
ITERs SUM BF INF NINF OBJECT VALUE V<IN MOVE REDUCED COST ACTIVITY V=BUT MOVE

plver
78 0178393500+0% 1 »0+897706980¢01 151 LeB 0+128740130-01 04207146820+01 5 Bey =0+234732190+08

NEGATIVE DJ COUNT o 2 SELECTED 2 VARIABLES BEST DJ o «0+1511650+01

ITER. Syh 8F INF NINF OBJECT VALUE VeIN MOVE RED?CED cost ACTIVITY V=8UT MOVE plvet
79 Q0172181090401 1 %00837706730+01 46 Lo Gs40787216D=02 0c602613280=03 173 Bey «0¢50328%47D+00

NEGATIVE DJ COUNT = 0 SELECTED O VARIABLES BEST DJ = 040000000400
INTERNAL STATEMENT NUMBER 33 TIME s 11138

8 NONeBASIC SLACKSe COMPLETELY TRIANGULARIZED 1 ROWS AND 9 CBLS.
0 IN NBNeCOMPLETELY TRIANGULARIZED PART. OF THESE 0 WHERE NOT TRIANGULARIZED AND 0 WERE REJECTED FBR 188 SHALL A PIVOTe
MATRIX T8 BE INVERTED hAD 10 COLS AND 22 ELEMENTSs INVERSE HAS 8 COLS AND 20 ELEMENTS.

600 MS FBR INVERT
INTERNAL STATEMENT NUMBER 34 TIME o 11138
INTERNAL STATEMENT NUMBER 23 TIME 11338

NEGATIVE DY COUNT » 1 SELECTED 1 VARIABLES 8EST Dy = 03000000401

ITER: SUM oF INF NINF BBJECT VALUE VeIN MOVE REDUCED COST ACTIVITY VeBUT MOVE plvey

80 0+172090000+01 1 «0e897622650+01 174 LB O+78504466D0=02 0107107130400 210 B=U «00879380850+00
NEGATIVE DJ COUNT = & SELECTED & VARIABLES BEST D) » =00329839D+401
ITER. SUM OF INF NINF BBJECT VALUE VveIN MOVE REDUCED COSYT ACTIVITY VegUT MBVE

plver
81 0139957860401 1 =0+898343010401 211 (=R =0+192173620~01 0¢374848940+00 6 Hey <=0e21161721D401
SEP VARe 173 REJECTED
SEP VARe 175 REJECTED
ITERe SyM BF INF NINF BBJECT VALUE V=IN HBVE REDUCED COST ACTIVITY VepUT MBVE pIvey
82 0163180820400 1 0083947768001 57 yeL =0¢11346689D0-01 0+100000000+01 NNE

NEGATIVE DOV COUNT 2 SELECTED 2 VARIABLES BEST Dy » =Ce153463D+01
ITERY SuM oF INF NINF OBJECT VALUE Vv=IN_MBVE REDUCED CBSY ACI!VITY

83 0010254074D+00 1 =0¢89955497D+01 47 LB <«0¢11567315D°01 0466818026D=01
SSLUTION FEASIBLE AT ITERATION a3

VeaUT MBVE plver
& Bl 0e153462690+01

1BFEBS9 NONs| INEAR PROBLEM NO 6 Os 1 7e

NEGATIVE DJ COUNT = 8 SELECTED & VARIABLES BEST OJ = «0¢ 1000000400

SEP YARe 14 REJECTED

SEP VARe 17 REJECTED

SEP VARe 210 REJECTED

SEP VARe 212 REJECTED

ITER» SuM of INF NINF BBJECT VALUE VeIN MBVE REQUCED COST ACTIVITY V=0UT MOVE eivey
8% +000000000+00 0 =0+900247530+01 56 UeB =0:221633600=01 0¢312480090+00 102 BeL =0¢635133300400
85 0+000000000+00 0 =0¢900548570401 20 LeB <+0¢102400520-01 0+294373820+00 151 Beu «0¢66%392300+400

SEP VARe 46 REJECTED

SEP VARe 48 REJECTED

NEGATIVE DJ COUNT » & SELECTED » VARIABLES BEST Dy » =0¢1133480-01
SEP VARs 85 REJECTED
SEP VARe 57 REJECTED
ITERT SUM OF INF NINF @BJECT VALUE VeIN MOVE REDUCED CBST ACTIVITY VeBUT MOVE pivey
85 0+000000000+00 0 =0e900784670+01 101 UsB «0s57516848D=02 0+20979806D+00 56 BelL =0+13470169D+0]
SEP VARe 21 REJECTED

NEGATIVE DJ COUNT o 0 SELECTED O VARJABLES BESY Dy e 00000000400
INTERNAL STATEMENT NUMBER 33 TIME = 11138

9 NON=BASIC SLACKSs CBMPLETELY TRIANGULARIZED 0 ReWS AND 7 CBLSe
3 IN NONeCOMPLETELY TRIANGULARIZED PART. OF THESE { WHERE NOT TRIANGULARIZED AND 0 WERE REJECTED FOR TOO SMALL A PIVOTe
MATRIX T8 BE INVERTED MAC 10 COLS AND 28 ELEMENTS, INVERSE HAS 11 CBLS AND 28 ELEMENTS,

1200 M§ FOR INVERT
IRTERNAL STATEMENT NUMBER 34 TIME » 11138
INTERNAL STATEMENT NUMBER 23 TIME » 18138

NEGATIVE DJ COUNT = 8 SELECTEC 8 VARIABLES BEST OJ v =01000000+00

SEP VARe 14 REJACTED

SEP VARs 17 REJECTED.

SEP VARe 210 REJECTED

SEP VARy 212 REJECTED

ITERs SUM OF INF NINF BBJECT VALUE Ve=IN MOVE REDUCED COSY ACTIVITY VeBUT MOVE piver

87 0+000000000+00 0 *0901479120+01 5% Jef =0s15533716D-01 0+447062100+00 20 Bs=L <+0.28292903D+00

SEP VARe a6 REJECTED

SEP VARe #8 REJECTED

92 Appendix C

NEGATIVE DJ COBUNT » 5 SELECTED S VARIABLES BEST DJ s «Ce7503300=01

ITERY SUM oF INF NINF' 8BJUECT VALUE VveIN MAVE REDUCED C8STY ACTIVITY VeBUT MBVE piver
88 0000000000400 0 «0¢902002930+01 152 (=B «0s75032995D0=01 069805508001 101 gef Q4377934040401

SEP VARe 56 REJECTED

SEP VARe S« REJECTED

NEGATIVE DJ COUNT = O SELECTED O VARIABLES BEST Dy s 000000000+00

INTERNAL STATEMENT NUMBER 33 TIME o 11338

12FEB69 NOBNe_INEAR PRBBLEM N§ & Os Lo B
9 NON=BASIC SLACKSs COMPLETELY TRIANGULARIZED 1 RBWS AND 7 COLSe

2 IN NONeCBMPLETELY TRIANGULAR]ZED PART. OF THESE
MATRIX T8 BE INVERTED HAD

1200 M§ FOR INVERTY

INTERNAL STATEMENT NUMBER 34
INTERNAL STATEMENT NUMBER 23

10 COLS AND

TIME « 11838
TINE » §1238

1 WHERE NOT TRIANGULARIZED AND
25 ELEMENTSe INVERSE HAS™

11 COLS AND

26 ELEMENTS,

0 WERE REJECTED FBR TS SMALL A PIVEBT.

N:uAnv: DJ COUNT & 8 SELECTED & VARIABLES BEST DJ = 041000000400
SEP V 14 REJECTED
SEP m. 17 REJECTED
SEP VARe 210 REJECTED
S8EP VAR, 212 REJECTED
SEP VARe 86 REJECTED
SEP VARs 54 REJECTED
SEP VARe 46 REJECTED
SEP VARe 48 REJECTED
NEGATIVE OJ COUNT » O SELECTED O VARJABLES BEST Dy s 040000000400
LBCAL BPTIMUM ENCOUNTERED
OPTIMAL SOLUTIONs BBUECTIVE VALUE #+0¢90200293D+01
INTERNAL STATEMENT NUMBER 24 TIME = 31139
12FEB69 NONeLINEAR PROBLEM Np o O 2¢ 1o
IOENTIFIER SECTION
PROBLEMess NAMEee
MODEse SEP
CLASS BEP
STATUS @PTIMALe
FUNCTIBNAL NAMEes 8B4T
oBJEC? HIN!HIZE
VALUES *9+020030
RESTRAINT. NAMEss 1RHS
ITERATIONe COUNT» a8
12FEB69 Non=_ INEAR PROBLEM NB 6 Os 2¢ 20
SECTION 1 » RSwS PRIMAL®DUAL BUTRUT
NUMBER ooLABELe AT «ooACTIVITYess SLACK ACTIVITY eeLOWER LIMITe osyPPER ann' sDUAL ACTIVITY seINPUT CBSTee oREDUCED COSTe
1 eBJT FR *9¢030030 94020029 NBNE ONE 1+000000 14000000 040006000
2 ROWi EQ 30016836 0,000000 30+016586 3o.oum 04300000 0.000000 ’
3 Row2 EqQ skoofgaip 0,0800000 440959442 4409594532 04280000 04000000 0280000
4 RowW} EQ 27ea34430 04300000 270414490 374414450 00003934 04606000 «00393%
S ROWS EQ 99:2836899 04000000 99,836899 99.836399 0000000 04000000 0+000000
6 ROWNS €0 0+005200 0.000000 00005200 04005200 «0+061053 0.000060 *0e041052
7 ReWe EQ 315401028 0,000000 314601028 31801028 00641452 0.000000 =0o881452
8 ROW? €0 8:466020 04000000 84466020 "84436020 *0+009013 04000000 «0:509013
9 Rews EQ 4s137710 04000000 44137710 44137710 04000000 0,000000 0000000
10 Row9 €0 0:001000 0,000000 00001000 00001000 0+583422 0.000000 0+583822
12FEB63 NgN<LINEAR PROBLEM Ng o Os 20 3.
SECTION 2 » COLUMNS PRIMAL=DUAL BUTPYT
NUMBER o oLABEL® AT o0oACTIVITYess osINPUT COSTes ool BWER LIMITe oeyUPPER LIMITe oREDUCED COSTs
1 x5 8s 0514710 04000000 0+000000 NONE 0000000
2 UBBUNDL EQ 09000000 0000000 0000000 04000000 0000000
3 u 8s 0e949472 *3,000000 0+000000 1+000000 04000000
L Ll 04000000 *34100000 04000000 1000005 *0¢100000
$ useundDz EQ 09000000 04000000 04000000 04000000 04000000
6 U3 8s D+189566 »20800000 04000000 1.,0005060 0000000
7 Uk LL 0+000000 »24300004 04000000 1.000000 «04100000
[Y] (X% 0+000000 24000000 04000000 14000000 »1+600000
9 S3BBUND EQ 8+000000 040600%0 04000000 0.000000 04000000
0 35 § LL 0+000000 04080000 04000000 0060 04003676
21 3s 2 L 0+000000 0000000 04000000 1 000000 04002288
22 353 L 04000000 0000000 00000000 14000000 00000837
23 35 & Lt 0.000000 0000000 04000000 1.000000 =0000600
24 3s s L 0+000000 0.000000 04000000 1000000 «0+002015
25 35 ¢ X% 0+000000 0.000000 04000000 1.000000 =04004496
26 357 L $+000000 0.008000 04000000 1000000 «0+006622
27 3s s L 0000000 0000000 0+000000 1.000000 =0¢008797
28 359 L G.000000 04000000 04000000 1.006000 «0+010907

Appendix C

93

29 3s10 L 04000000 0.000000 00000000 1.000000 «04015836
30 3siy LL $+000000 0,0060000 04000000 1,000000 =0,01879%
31 3s12 L 0+000000 0.000000 0.000000 1000000 =0.0217114
32 3s13 LL 0+000000 0.000080 04000000 1.000 »0s024588
33 3sie LL 00000000 0000000 0000000 1,000000 =0¢027429
3» 3518 (A% 8+000000 00000000 04000000 1{,000000 =0+025002
35 3s16 Ll 0+000000 0.000000 04000000 1000000 =0+026929
36 SeBouND EQ 8»000000 0300000 04000000 0000000 0+000000
37 as g uL 1,000000 04000600 0+000000 1000000 0014691
38 4 2 uL 1+000000 04000000 0000000 1,000000 0+013432
39 4s 3 uL {+000000 04000000 06000000 1.,008000 0.,012110
40 48 & UL 1000000 - 0000000 0000000 1,000000 04010755
§1 4s s uL 1,000000 0+000000 0000000 1000000 0,009511
§2 456 UL 10000000 04000000 04000000 1.000000 0.0100%8
33 4§ ? uw 12000000 00000000 04000000 1+000000 0.008171
4 s s u i»000000 0060000 04000000 14000600 04006200
¥ a5 9 uL 1+000000 0.060060 04000000 1000000 0004254
LT 13T UL 1+000000 0000000 04000000 1,000000 0002667
87 asit 8s 00000041 04000000 04000000 1000000 04000000
48 as12 LL 04000000 0.000000 04000000 1,000000 «0+002627
39 4513 L 09000000 04000000 0000000 1000000 ©04005215
50 asis L 0+000000 0.000000 0000000 14000000 *0+007766
51 4515 L 0000000 04000000 0+000000 1.,000000 «0+008395
52 #si6 Lt . 0+000000 04000000 04000000 1.000000 =0,010121
53 S$sseunp EQ 0+0080000 0000000 04000000 04000000 04000000
S4 Sg 1 uL 1+000000 04000000 04000000 1.000000 0.007376
5% &g 2 8§ 00160604 04000000 04000000 1000000 0+000000
56 5§ 3 LL 04000000 0+000000 04000000 1.,000000 *De010788
12FEB69 NoneL INEAR PROBLEM N8 6 De 20 e
SECTION 2 » GOLUMNS } PRIMALeDUAL BUTPUT
NUMBER ¢oLABELs AT «oeACTIVITvsse »oINPUT COSTes oolBWER LIMITe oeUPPER LIMITe +REDUCED COSTe
57 S5 & L 04000000 0,000000 04000000 1+000000 «0+020808
58 55 § (AR 00000000 0,000000 04000000 { «000000 04029918
59 S5 6 LL 0000000 0,000000 04000000 1.,000000 «04037532
&0 S§ 7 LL 0+000000 04000000 04000000 0000 *0e044928
81 55 8 (18 0000000 0000000 04000000 1000000 04051767
62 S5s 9 tL 0+000000 0.000000 00060000 100 *0,058118
83 5si10 LL 6+000000 0006060 04000000 1000000 #0¢064042
B4 Ssii LL 04000000) 00000000 o0 «04070844%
65 5512 LL 8000000 0060000 04000000 14000000 =040749i0
5513 €8 +0806%0 0,000000 0+000000 «0+079837
57 5sla L 05000000 0000000 04000000 1000000 *0¢084508
68 Ss18 LL 0+000000 040000600 04000000 00 *0¢088946
89 5816 LL 0000000 0,000000 04000000 1.,000000 *0¢093176
70 8817 L 8+000000 0.800000 04000000 10000 *0+098929
71 Ssi8 LL 0000000 04000000 0+000000 1000000 *0e153149
72 5819 L 0+000000 04000000 04000000 1000000 =0e161372
73 Ss20 L 0+000000 0,005000 04000000 1,800000 »00169165
78 5821 48 be000000 Os 04000000 1006000 *0¢118959
7% 5522 Ll 01090000 0.000000 04000000 1.000000 =0e181422
76 5823 L +00 0000000 04000000 1+806000 *0¢188320
77 5s28 L 6+000030 0+000000 04000000 1.000000 *0s194958
78 Ss28 L 02000000 0+000000 0+000000 14000000 *04203716
79 5s28 L 8+000000 0,000000 0+000000 1000000 *0e278209
80 Ss27 L 0+000000 0000000 00000000 14000 0,2883%4
81 b5s28 LL 0000000 0,000000 04000000 14000000 =0¢301 764
82 5sag 8 0#000000 04000000 0000000 1000000 *0¢309239
83 5830 w 0+000000 0000000 04000000 1000000 =0¢319003
By Ss31 tL 0+000000 0000000 04000000 1,000000 0331446
88 5832 LL 0+000000 04000000 00000000 1,0000 =00424036
5833 (48 0+000000 0000000 0+000000 1.,000000 0530995
87 5s3a L 8:000000 0.000800 04000000 1000060 *0¢593545
88 5s3% S 0+000000 04000000 0+000000 100001 «00657459
89 5536 L 04000000 0.000000 0+000000 1.,000000 =0e¢684185
S0 %837 (€% 02000000 04000000 04000000 1000000 «04710959
91 5533 Lt 0+000000 0.000000 04000000 1,000000 *0¢737911
92 5§39 L 0#000000 Oe 04000000 1,0000 *De765172
93 Ss40 €N 02000000 0.000000 04000000 1,000000 *0¢792864
9% Sgay w He000000 0+06608380 04000000 10000060 “le202437
96 Ssa2 LL 00000000 04000000 04000000 1.000000 =1+30825%
36 5sa3 LL 6+000000 0.000000 04000000 1000000 *19377036
97 Ssas 0+000000 04000000 00000000 1,000000 »1¢391363
98 SeBouND EO 0+000000 0+000000 04000000 0,000000 04000000
59 65 1 uL 1.000000 0000000 04000000 14000000 =0+024911
100 és 2 uL 1+000000 04000000 0000000 1,000000 «04003702
101 65 2 LL 00000000 04000000 04000000 1.000000 04019853
102 é&s » 48 0000000 0000000 0+000000 140001 04041505
12FEBES NON=LINEAR PROBLEM N8 & Os 2¢ 5S¢
SECTIBN 2 » COLUMNS PRIMAL=DUAL BUTPUYT
NUMBER soLABELs AT eesACTIVITYoos ooINPUT COSTee e 8WER LIMITe «oUPPER LIMITe oREDUCED CES8Te
103 6S S LL 0000000 0000000 04000000 1000000 04067268
106 &8 & L 65000000 0000000 0000000 1+000000 00095584
108 és 7 L 0+000000 0,000000 00000000 1.,0606000 0e114636
i06 63 8 Ll 8+000000 04800000 ©+000000 1c 00186163
i07 68 9 i £#000000 £+0000CC 24800000 1.000000 0.189295
108 esio0 LL «0! 0+0060080 04000000 1,000000 04223243
109 &sit L 0000000 0.000000 04000000 1.000000 0257760
1lo &si2 L 6+000000 0,000000 04000000 1,000000 0s292652
111 e¢s13 LL $+000000 0.000000 04000000 1000000 04327772

94 Appendix C

12 ¢sis tL 0+000000 04000000 04000000 1,000000 04363007
1{3 ésis LL 8000000 04000000 04000000 1006000 00398273
114 &si6 L 03000000 0000000 04000000 14000000 0¢433507
ils és17 L 6+060080 04000000 04000000 1,000000 004686866
116 ésis [y 04000000 04000000 0+000000 14000000 04503713
117 ési1e LL 8000060 0,3060000 0+000000 1,000000 04538635
118 6520 LL 0+000000 0000000 00000000 1000000 0+573408
il9 es21 L 84000000 00300806 04000000 1000030 0e¢584438
120 &s22 LL 0+000000 04000000 00000000 140000 0e644804
121 és23 L 04000000 0,000000 0+000000 1 000000 04649683
122 6s24 L §+000000 0+0008000 04000000 1,000000 0e685611
123 ¢s2s (X% 9+000000 00060000 04000000 1.,006060 0694108
124 éspe 48 0+000000 0+000000 04000000 14000000 0¢7017{9
125 és27 Lt 00000000 0.000000 00000000 1000000 0e759432
126 6328 o 03000000 04000000 04000000 {+000000 04766510
127 6529 LL 0+000000 04000000 00000000 1000000 04824650
128 6s30 L 04000000 0+000000 04000000 1000000 04831228
129 653y L 0000000 0000000 04000000 1.+006000 0eB63443
130 6s32 L 0¢000000 04000000 04000000 1,000000 De842791
131 6833 L 0+000000 0+060000 0,000000 10000600 04808760
132 S7eeunp EQ 04000000 04000000 04000000 0,000000 0000000
133 75 4 u 1+000000 04000000 04000000 1,006600 «04709566
138 715 2 UL 1s000060 0000000 0000000 1000000 =0+928400
135 7s 3 uL 14000000 04000000 04000000 1,000000 «0+838122
136 75 & uL 1000000 04000000 0+000000 1,000000 ©0s 748845
137 75 5 uL 1+000000 04000000 04000000 14000000 *00668881
138 75 ¢ uL {+000000 04000000 04000000 1+000000 =00634910
139 7s 7 uL 1000000 04000000 04000000 14000000 =04562540
130 75 8 uL 14000000 0,000000 04000000 14000000 =0+526085
131 75 9 UL {+0080000 04000000 0000000 10000000 =0¢45700%
132 7819 uL 14000000 0.000000 04000000 1000000 =0¢405697
133 751y UL 1:000000 04000000 04000000 1+000000 =0e335484
184 7512 u 1000000 04000000 04000000 1,000000 =0e271429
138 7s13 uL 14000000 0000000 04000000 1,000000 “0e212479
156 7sis VL 1000000 04000000 00000000 14000000 =04193497
187 7s1s uL 19000000 04000000 04000000 1000000 “0el149144
148 7s16 uL 1000000 04000000 04000000 1.000000 =0+115218

12FEB69 NGN=| INEAR PROBLEM Ng 6 Qe 2s 6o

SECTION 2 = COLUMNS PRIMALeDUAL BUTPUT

NUMBER ooLABEL® AT ¢oeACTIVITYoos soINPUT COSTee oolBWER LIMITe soUPPER LIMITe oREDUCED COST.
149 7sy7 uL 1000000 0+000060 04000000 1000000 *0+083%849
150 7sis uL 12000000 04000000 00000000 *04053914
151 7sis uL 14000000 0,000000 0+000000 1000000 =0+026120
152 7seo BS 04069809 0,000000 00000000 1400000 00000000
153 7s2y LL ©+000000 0.300000 04000000 1.000000 04024593
154 7g2p L 04000000 04000000 04000000 14000000 04047778
155 7s23 LL 0+000000 04000000 0+000000 1+000000 04069687
156 7924 L 0000000 0000000 04000000 +000000 04090419
i57 7ses L 0+000000 04000000 04000000 1000000 0¢110054
158 7s26 L 04000000 0,000000 04000000 1000000 04128694
159 7s27 L 04000000 0000000 04000000 1.000000 Delagaly
160 7Js2s L 09000000 0000000 04000000 10000000 00163256
161 7say LL 0+000000 0,000000 04000000 1.000000 0179305
162 7830 Lt 0+000080 0000000 04000000 1.000000 0¢194616
163 731 L 8+000000 0,000000 04000000 1000000 Oe115641
154 SsasuND EQ 0+000000 04000000 04000000 00000000 04000000
165 8s uL {+.0060000 04000000 04000000 1000000 «0+002339
186 85 2 uL {:000000 04000000 04000000 1000000 *0+003814
167 85 3 uL 14000000 04000000 0+000000 1000000 =0+002986
188 385 & L 1+000000 0,0000060 00000000 10000060 *0,002713
159 &8s s uL 14000000 0000000 0000000 1,000000 =0.002096
170 8s ¢ uL 14000000 0,000000 04000000 1000000 =04001619
171 8s 7 uL 1:000000 0000000 04000000 1,000000 =00001174
172 &s 8 uL {+000000 04060000 04000000 1006000 =0+000758
173 85 9 UL 1000000 04000000 04000000 1.,000000 «04000367
174 8ste 88 00573633 00000000 0000000 140000600 04000000
175 8s11 LL 0+000000 04000000 0000000 1000000 04000346
176 8si2 (s 04000000 04000000 04000000 14000000 04000671
177 8s13 L 04000000 04000000 04000000 10000000 04000979
178 8sia L 0+000000 0.000000 04000000 1000000 - 04004270
179 8sis L 0+000000 04300000 04000000 1000000 04001846
180 &sig (X8 04000000 04000000 00000000 1.000000 04001808
181 8s17 L 0+000000 0000000 04000000 1.,000000 04002057
182 ssis LL %+0080000 0300000 €+000000 1.000000 0+002294
183 ssi9 tL 014000000 040080000 0+000000 1.000000 00002519
184 8520 kL 04000000 04000000 04000000 1,000000 04002735
185 8s2y L 0+000000 040086600 00000000 1000000 04003021
186 someunp EQ 04000000 0,000000 04000000 0,000000 0+000000
187 9s 1 UL 14000000 0,000000 0000000 1,000000 04000000
188 355 2 uL 14000000 0000000 04000000 1+000000 04000000
189 95 3 u 14000000 04000000 0000000 1,000000 04000000
190 35 & uL 1+000000 04000000 04000000 1,000000 04000000
191 9s 5 uL 1000000 04000000 04000000 1000000 04000000
192 95 ¢ uL 14000000 0.000000 04000000 1.000000 040006000
153 95 7 BS 0+602818 04000000 04000000 1.000000 0000000
194 95 8 L 04000000 04000000 04000000 1+,000000 04000000

Appendix C

95

12FEB69 NON=LINEAR PROELEM NO 6

SECTIBN 2 = COLUMNS PRIMAL=DUAL BUTPYT

NUMBER +oLABELe AT ¢osACTIVITYess ooINPUT COSTes ooLBWER LIMITe osUPPER LIMITe <REDUCED COBTe
195 95 9 L 0+000000 04000000 04000000 14000000 00000000
196 9s10 L 0000000 04000000 04000000 1,000000 00000000
197 9siy L 04000000 0000000 04000000 1,000000 04000000
138 9s12 L 0000000 04000000 00000000 14000000 04000000
199 9si3 LL 04000000 0.,000000 0000000 1.,000000 04000000
200 95is L 0+000000 0,000000 04000000 i.oooooo 04000000
201 9sis L 04000000 0.000000 04000000 +000000 0000000
2 9516 LL 8+060000 0,000000 ‘B 1e 0 0+000000
203 9siy 48 0+000000 04000000 04000000 1.+,000000 04000000
20s 93l tL . 0 0000000 04000000 1+000000 04000060
208 9si9 LL 0+000000 0000000 04000000 1+000000 0+000000
206 siosouno Eo 03000000 04000000 04000000 04000000 0+000000
207 is 1 U 1+0u0000 04000000 04000000 14000000 0019473
208 s 2 uL 1000000 0+000000 04000000 1,000000 04097063
208 is 3 UL 1.000000 0000000 . 0000000 1000000 00059661
210 1Is & UL 15000000 0+000000 04000000 1000000 0¢02880%
211 is § 8s 0374868 04000000 0000000 1000000 04000000
212 s e L 04000000 04000000 0000000 1000000 =04026954
I3 s L 01000000 0000000 04000000 1 ,000000 *Ds052234
2is s 8 L 9+000000 04006000 04000000 1000000 *0+075991
2l 1s 9 LL 8+000000 - 0,000000 04000000 1000000 =0+098359
216 1sio L 04000000 0000000 04000000 1.,000000 00119444
217 Isiy L 0:000000 04000000 0000000 1,000000 *0013937%
2is 1si2 LL §+000000 0000600 0+000000 1000000 *0e158230
219 (si3 L 04000000 04000000 0+000000 1,000000 *0¢176089
220 1sis L 0+000000 0.000000 0+000000 1000000 *0+193043
221 isis [0+000000 04000000 04000000 1000000 “0e1 46168

222 SEPEND EO 8000000 0000000 04000000 04000000 04000000

12FEB69 NONe= INEAR PROBLEM No 6

INTERNAL STATEMENT NUMBER 2% TIME » 11:39

eEX1Te

TOTAL JO6B TIME 2403
PROBCESSOR EXECUTION TIME +00
PROCESSOR /6 TIME «07
PROCESSOR OVERHEAD TIME «08
USER EXECUTION TIME 56
USER 1/8 TIME o460
USER BVERMEAD TIME 72

OF CARDS READ 994

']

OF CARDS PUNCHED 0
OF PROCESSOR PAGES 8UT 2
BF USER PAGES OLT 18
OF DIAGNOSTIC PAGES 8UT 0
OF SCRATCH TAPES USED 0
OF SAVE TAPES USED 0
OF DISK READS AND WRJTES 1436
OF DISC READS AND WRITES z8ia
TEMPORARY DISC SPACE USED 3
PERMANENT DISC SPACE USED 0
ACCUMY PERMe DISC SPACE USED c

96 Appendix C

